
Horst Rechner
06. Februar 2002

Folie #1

Netzwerktests

§ Betreuer: Priv. Doz. Dr. habil. Thomas Kropf
§ Vortrag: Horst Rechner

Eberhard Karls Universität Tübingen
Wilhelm-Schickard-Institut für Informatik
Arbeitsbereich Technische Informatik

Seminar Pleiten, Pech und Pannen in der Informatik
07. Februar 2002 (Wintersemester 2001/2002)

Horst Rechner
07. Februar 2002

Folie #2

Teardrop DoS 1998

IP fragment 1

IP fragment 2

0 100 200Offset in bytes

IP fragment 1

IP fragment 2

Größe:

100-0 bytes

200-100 bytes

200-0 bytes

150-200 bytes

Quellen: [Burg00], [CPTIT]

Horst Rechner
07. Februar 2002

Folie #3

Kosten?

§ 3 Typen von Denial of Service:
§ Software
§ Flooding (SYN Flood)
§ DDOS

§ Erste wissenschaftliche Studie:
Internet Denial-of-Service Activity
University of California, San Diego
USENIX Security ’01

§ 12805 Attacken in 3 Wochen

Quellen: [Moore01]

Horst Rechner
07. Februar 2002

Folie #4

Kosten?

§ Kosten schwer zu kalkulieren

§ CSI/FBI Umfrage:
§ 2001 - 378 Millionen $ (186 Befragte)
§ 2000 - 276 Millionen $ (249 Befragte)

§ Viele Organisationen erteilen keine Auskunft
oder haben überhaupt keine Kenntnis

Horst Rechner
07. Februar 2002

Folie #5

Welchen Aspekt?

Performance

Error

Conformance

(Stress / Load)

(Security)

(Compliance / Functionality)

Horst Rechner
07. Februar 2002

Folie #6

Welcher Layer?

Pre
se
nta

tio
n

Se
ss
ion

Tr
an

sp
or
t

Ne
tw

ork

Da
ta

Lin
k

Ph
ys
ica

l

Ap
pli
ca
tio

n

Aspekt

Quellen: [Lex], [Lewis97]

Performance

Error

Conformance

Horst Rechner
07. Februar 2002

Folie #7

Welcher Stack?

Pre
se
nta

tio
n

Se
ss
ion

Tr
an

sp
or
t

(D
ata

 Li
nk

)

(P
hy

sic
al)

(A
pp

lica
tio

n)

Aspekt

TCP/IP
Apple

Novell
IBM

IP TCP Telnet, FTP, SMTP

IPX SPX NetBIOS NCP

Ne
tw

ork

Quellen: [Lex]

Performance

Error

Conformance

Horst Rechner
07. Februar 2002

Folie #8

Wir bekommen ein Tripel

Pre
se
nta

tio
n

Se
ss
ion

Tr
an

sp
or
t

Ne
tw

ork

(D
ata

 Li
nk

)

(P
hy

sic
al)

(A
pp

lica
tio

n)

Aspekt

La
ye

rTCP/IP
Apple

Novell
IBM

Stack
§ Also teste ich IP

gegen die RFCs (1/0)

Performance

Error

Conformance

Horst Rechner
07. Februar 2002

Folie #9

Was ist mit Layern 1, 2 und 7?

(P
re
se
nt
ati

on
)

(S
es
sio

n)

(T
ran

sp
or
t)

(N
etw

ork
)

(D
ata

 Li
nk

)

(P
hy

sic
al)

Ap
pli
ca
tio

n

Aspekt

La
ye

rSMTP
HTTP

Telnet
FTP

Applikation
§ Also teste ich sendmail gegen

die Nichteinhaltung der RFC
(1/0)

Performance

Error

Conformance

Horst Rechner
07. Februar 2002

Folie #10

Was ist mit Layern 1, 2 und 7?

Da
ta

Lin
k

Ph
ys
ica

l

TP
Coax

Fiber
Wireless

Ethernet
Token-Ring

FDDI
ATM

§ Also teste ich
das Medium
gegen die
Spezifi-
kationen

Performance

La
ye

r

Quellen: [Lex]

Horst Rechner
07. Februar 2002

Folie #11

Teardrop DoS 1998

§ Tripel: Error, Network, TCP/IP
§ Aus IETF RFC 760:

„The fragment offset field of the
second new internet datagram is set to
the value of that field [the offset
field] in the long datagram [the
unfragmented one] plus NFB [the number
of fragment blocks].“

Quellen: [IETF80]

IP fragment 1

IP fragment 2

200-0 bytes

150-200 bytes

Horst Rechner
07. Februar 2002

Folie #12

Was hätte hier helfen können?

§ Test der Implementation gegen die RFCs
(Conformance)

§ Test gegen Abweichungen von den RFCs
(Error)

> Packet Generator / Analyzer

Horst Rechner
07. Februar 2002

Folie #13

Empirix ANVL
§ IP Test Suites

IP RIP (v1 and v2) Gateway / OSPFv2 (RFC1583/2328) / BGP4
(RFC1771) / RMON (RFC1757/RFC1513)

§ PPP Test Suites
Basic PPP (with tests for LCP, PAP, and CHAP) / IPCP (RFC1332) /
Multilink PPP (RFC1717/RFC1990) / VJ Test Suite (TC/IP, RFC1144) /
Spanning Tree (IEEE 802.1d)

§ Multicasting Test Suites
IGMP (RFC2236v2) / DVMRP (IETF Draft 3) / PIM (sold as one unit) /
Sparse Mode - IETF Draft#1v2 / Dense Mode - IETF Draft#3v2

§ TCP Test Suites
Core (RFC 793, 1122) / Advanced (RFC 2001, 2581, 1191, 2385) /
Performance (RFC 1323, 2018)

§ VPN Test Suites
PPTP (IETF Draft 2) / L2TP (RFC2661) / IPSec AH (RFC2402/2401) /
IPSec ESP (RFC2406) / IPSec IKE (RFC2409/2408) / L2TPSec
(RFC2661)

Quellen: [Emp02]

ANVL (Automated Network Validation Library)

Horst Rechner
07. Februar 2002

Folie #14

Packetanalyzer

Network Instruments Observer
http://www.networkinstruments.com/

http://www.networkinstruments.com/

Horst Rechner
07. Februar 2002

Folie #15

Referenzwerte

Für jeden Test braucht man Referenzwerte.

Wie findet man diese Werte?

Horst Rechner
07. Februar 2002

Folie #16

Performance

§ „Meine Email ist langsam !“
> Tripel: Performance, Application, SMTP

ServerClient NetzNetz

Quellen: [Acter02]

Horst Rechner
07. Februar 2002

Folie #17

Netz
§ Protocol Analyzer: Timestamp

§ Netzwerklast?
§ Kolllisionen?
§ Retransfers?
§ Route (PPS / Latenz der Komponenten)?

ServerClient

Horst Rechner
07. Februar 2002

Folie #18

Client und Server

§ Protocol Analyzer: Timestamp

§ Think Time?
§ Serverlast?

ServerClient
Black
Box

Black
Box

Horst Rechner
07. Februar 2002

Folie #19

Ausblick
§ Weitere Anforderungen an Netzwerktests

§ Performance oder QoS: VoIP
§ Verfügbarkeit und garantierter Durchsatz

z.B. bei G.723.1 und 6.4 kbps (UDP: 13.3 kbps)
> Priorität der Pakete bei IPv6
§ geringe Latenz (< 250 ms) und Änderung der

Lantenz (Jitter)
§ Hardware

(vgl. TI TMS320C5000 200 MHz und 400 MIPS)
Encoder braucht ca. 20 MIPS
Decoder braucht ca. 2 MIPS

Quellen: [Evans02]

Horst Rechner
07. Februar 2002

Folie #20

Quellen
§ [Acter02]

White Papers
Acterna, LLC
http://www.acterna.com/technical_resources/white_papers/index.html

§ [Burg00]
Week 15: TCP/IP security
Prof. Mark Burgess, University College Oslo, Faculty of Engineering, Norway,
http://www.iu.hio.no/~mark/lectures/sysadm/html/SA15.eng.html

§ [CPTIT]
-
Corporate Persuasion Through Internet Terrorism
http://63.105.33.158/security/denial/w/teardrop.dos.html

§ [Emp02]
ANVL™ Automated Network Validation Library
Empirix
http://www.empirix.com/empirix/voice+network+test/products/_anvl+automated+network
+test.html?page=new_home&link=dropdown_anvl

§ [Evans02]
Notes on Texas Instruments Processors
Brian L. Evans, The University of Texas, Austin
http://www.ece.utexas.edu/~bevans/courses/realtime/lectures/23_DSPs/texasInstruments
.html

http://www.empirix.com/empirix/voice+network+test/products/_anvl+automated+network
http://www.ece.utexas.edu/~bevans/courses/realtime/lectures/23_DSPs/texasInstruments

Horst Rechner
07. Februar 2002

Folie #21

Quellen
§ [IETF80]

DoD Standard Internet Protocol
Information Sciences Institute, University of Southern California, 1980
http://www.ietf.org/rfc/rfc0760.txt

§ [Lewis97]
James Bond Meets The 7 Layer OSI Model, 1997
Richard Lewis,
http://www.pe.net/~rlewis/Resources/james.html

§ [Lex]
Protocol Stacks in Relationship to the OSI Model
Lexicon Consulting
http://www.lex-con.com/osimodel.htm

§ [Moore01]
Inferring Internet Denial-of-Service Activity
David Moore, Geoffrey Voelker und Stefan Savage, CAIDA University of California, San
Diego
http://www.caida.org/outreach/papers/2001/BackScatter/

Global
Global Home > Technical Resources > White Papers View Printable Page

App Notes
Newsletter Library

Pocket Guides
Posters

Tech Links
Troubleshooting

White Papers

White Papers

Communications Technology
● 2.048 Mbps Technology Basics and Testing

Fundamentals (File: 598.4KB)

● ADSL Basics (DMT) (File: 291.9KB)

● An Introduction to the Essensials of ISDN (part I)

● ATM Support for Voice Applications (278K)

● "DECT--Technology on the Road to Success"

● Frame Relay Clears the Hurdles

● Frame Relay Flow Control and Data Transmission
❍ Part 1: Basic Frame Relay Transmission (147K)

❍ Part 2: TCP Over Frame Relay (107K)
❍ Part 3: TFTP Over Frame Relay (61.3K)

● GSM Pocket Guide

● HDSL Basics (File: 288.9KB)

● "How to Improve the Quality of Service of ISDN
Networks while Minimizing Maintenance Costs"

● Implementing a Distributed Test Solution for Wide
Area Digital Transmission Facilities (File: 406.1KB)

● ISDN, Basic Rate and Primary Rate Tutorial (3.02

MB)

● ISDN Test Solutions: Access and Equipment Edition
1

● ISDN Supplementary Services, ISDN Pocket Guide
No. 1 Edition 3

● MPEG-2 Pocket Guide Edition 1

● "Perspectives on TMN"

● PPP Troubleshooting, ISDN Pocket Guide No. 2
Edition 3

● SDH Pocket Guide

● SONET Pocket Guide

● Straight Answers about ATM Testing
● T1 Basics (File: 355.1KB)

● Tandem Connection Monitoring - Who has caused the
impairment?

● Test Solutions for Digital Networks (book)

● Testing Beyond The Physical Layer
● The Fundamentals of DS3 (File: 376.1KB)
● The Fundamentals of SDH (File: 131.3KB)
● The Fundamentals of SONET (File: 161.1KB)

Data Network Analysis

http://www.acterna.com/index.html
http://www.acterna.com/index.html
http://www.acterna.com/index.html
http://www.acterna.com/technical_resources/index.html
http://www.acterna.com/includes/printview.asp?URL=http://www.acterna.com/technical_resources/white_papers/index.html
http://www.acterna.com/products/index.html
http://www.acterna.com/services/index.html
http://www.acterna.com/customer_care/index.html
http://www.acterna.com/training/index.html
http://www.acterna.com/about_us/index.html
http://www.acterna.com/technical_resources/index.html
http://www.acterna.com/technical_resources/application_notes/index.html
http://www.acterna.com/technical_resources/newsletters/index.html
http://www.acterna.com/technical_resources/pocket_guides/index.html
http://www.acterna.com/technical_resources/posters/index.html
http://www.acterna.com/technical_resources/technical_links/index.html
http://www.acterna.com/technical_resources/troubleshooting/index.html
http://ir.acterna.com/
http://www.acterna.com/forms/contact_form.html
http://www.acterna.com/purchase_info/index.html
http://www.acterna.com/global_locator/global_contacts/index.html
http://www.acterna.com/careers/index.html
http://www.acterna.com/forms/survey_form.html
http://www.acterna.com/downloads/white_papers/2m_basics_an11_99.pdf
http://www.acterna.com/downloads/white_papers/2m_basics_an11_99.pdf
http://www.acterna.com/downloads/white_papers/tb1000.pdf
http://www.acterna.com/downloads/white_papers/isdn_essentials.PDF
http://www.acterna.com/downloads/application_notes/atm/atm_support_for_voice_apps_wp.pdf
http://www.acterna.com/technical_resources/white_papers/dect.html
http://www.acterna.com/downloads/white_papers/fr_hurdles.PDF
http://www.download.wg.com/appnotes/framerelay.pdf
http://www.download.wg.com/techlibrary/articles/framerelay_wp2.pdf
http://www.download.wg.com/techlibrary/articles/framerelay_wp3.pdf
http://www.acterna.com/technical_resources/white_papers/gsm_guide.html
http://www.acterna.com/downloads/white_papers/hdsl_tn.pdf
http://www.acterna.com/technical_resources/white_papers/isdnpartner.html
http://www.acterna.com/technical_resources/white_papers/isdnpartner.html
http://www.acterna.com/downloads/white_papers/fb_dtm.pdf
http://www.acterna.com/downloads/white_papers/fb_dtm.pdf
http://www.acterna.com/downloads/white_papers/isdn/isdntut.pdf
http://www.acterna.com/technical_resources/white_papers/isdn_cat.html
http://www.acterna.com/technical_resources/application_notes/isdn_supp_ser.html
http://www.acterna.com/technical_resources/application_notes/isdn_supp_ser.html
http://www.acterna.com/technical_resources/white_papers/mpeg2_guide.html
http://www.acterna.com/technical_resources/white_papers/tmn.html
http://www.acterna.com/technical_resources/application_notes/ppp.html
http://www.acterna.com/technical_resources/white_papers/sdh_guide1.html
http://www.acterna.com/technical_resources/white_papers/sonet_guide.html
http://www.acterna.com/downloads/white_papers/atm_answers.PDF
http://www.acterna.com/downloads/white_papers/t1_tn.pdf
http://www.acterna.com/products/ant/ant_communication_tech.html
http://www.acterna.com/products/ant/ant_communication_tech.html
http://www.acterna.com/technical_resources/white_papers/kiefer.html
http://www.acterna.com/products/aco/lanchecker/lancheckerwhitepaper/index.html
http://www.acterna.com/downloads/white_papers/fund_ds3.pdf
http://www.acterna.com/downloads/white_papers/sdh_tn.pdf
http://www.acterna.com/downloads/white_papers/sonet_tn.pdf

● Always On / Dynamic ISDN (AO/DI) Turn-up and
Maintenance

● "Analyzing the Analyzer: The Essential Features for
Protocol Analysis"

● "ATM Testing Challenges"

● "Benchmarking Methodology for Ethernet Switches"

● "How to Handle Test Access in Switched Ethernet
Environments"

● ISDN PPP Troubleshooting Guide, ISDN Pocket
Guide No. 2

● "Network Applications: Are They Performing?" Part 1:
A Client's Perspective

● "Network Applications: Are They Performing?" Part 2:
The Server vs the Network "

● "New Standards for Network Analysis: Expert
Systems Come of Age" (Net3 Group white paper)

● Selecting Network Analysis Tools for Network Service
and Support Organizations

● "Troubleshooting Complex Network Problems with
Advanced Network Analysis Equipment" (Tolly Group
white paper)

● What is a Protocol Analyzer?

Data Network Baselining
● " How to Choose a Baselining Tool"

● LAN Troubleshooting and Baselining (Pocket Guide)

● "Network Baselining, Part I: Understanding the Past to
Predict the Future"

● "Network Baselining, Part II: The Big Picture"

● "Network Baselining, Part III: Focus on the Node"

Site Map Contact Us Privacy Information © Copyright 2001 Acterna, LLC. All rights reserved.

http://www.acterna.com/technical_resources/application_notes/an69.html
http://www.acterna.com/technical_resources/application_notes/an69.html
http://www.acterna.com/technical_resources/white_papers/analyzer.html
http://www.acterna.com/technical_resources/white_papers/analyzer.html
http://www.acterna.com/technical_resources/white_papers/atmtest.html
http://www.acterna.com/technical_resources/white_papers/ethswit.html
http://www.acterna.com/technical_resources/white_papers/swittest.html
http://www.acterna.com/technical_resources/white_papers/swittest.html
http://www.acterna.com/technical_resources/application_notes/ppp.html
http://www.acterna.com/technical_resources/application_notes/ppp.html
http://www.acterna.com/technical_resources/white_papers/choosetool.html
http://www.acterna.com/technical_resources/white_papers/expert_systems.html
http://www.acterna.com/technical_resources/white_papers/expert_systems.html
http://www.download.wg.com/techlibrary/articles/FStools_wp.pdf
http://www.download.wg.com/techlibrary/articles/FStools_wp.pdf
http://www.acterna.com/technical_resources/white_papers/tolly_paper.html
http://www.acterna.com/technical_resources/white_papers/tolly_paper.html
http://www.acterna.com/technical_resources/white_papers/protocol.html
http://www.acterna.com/technical_resources/white_papers/choosetool.html
http://www.acterna.com/technical_resources/white_papers/pocketguide.html
http://www.acterna.com/technical_resources/white_papers/baselin1.html
http://www.acterna.com/technical_resources/white_papers/baselin1.html
http://www.acterna.com/technical_resources/white_papers/baselin2.html
http://www.acterna.com/technical_resources/white_papers/baselin3.html
http://www.acterna.com/site_map/index.html
http://www.acterna.com/forms/contact_form.html
http://www.acterna.com/privacy_information/index.html
"Network Applications: Are They Performing?" Part 1:
A Client's Perspective

"Network Applications: Are They Performing?" Part 2:
The Server vs the Network "

Global
Global Home > Technical Resources > White Papers View Printable Page

App Notes
Newsletter Library

Pocket Guides
Posters

Tech Links
Troubleshooting

White Papers

"Network Applications: Are They Performing?"

Part 1: A Client's Perspective

a white paper by Alan Chapman

Network managers hear it every day: "Why is the network so
slow?"

In the first of two white papers that examine the performance
of network applications, Alan Chapman, manager of
WGUSA’s Professional Services group, looks at the issue
from the user's perspective.

The second installment considers server- and network-
induced performance issues.

Adobe PDF Format

complete text as a PDF file (49K)

Site Map Contact Us Privacy Information © Copyright 2001 Acterna, LLC. All rights reserved.

http://www.acterna.com/index.html
http://www.acterna.com/index.html
http://www.acterna.com/index.html
http://www.acterna.com/technical_resources/index.html
http://www.acterna.com/includes/printview.asp?URL=http://www.acterna.com/technical_resources/white_papers/perform.html
http://www.acterna.com/products/index.html
http://www.acterna.com/services/index.html
http://www.acterna.com/customer_care/index.html
http://www.acterna.com/training/index.html
http://www.acterna.com/about_us/index.html
http://www.acterna.com/technical_resources/index.html
http://www.acterna.com/technical_resources/application_notes/index.html
http://www.acterna.com/technical_resources/newsletters/index.html
http://www.acterna.com/technical_resources/pocket_guides/index.html
http://www.acterna.com/technical_resources/posters/index.html
http://www.acterna.com/technical_resources/technical_links/index.html
http://www.acterna.com/technical_resources/troubleshooting/index.html
http://ir.acterna.com/
http://www.acterna.com/forms/contact_form.html
http://www.acterna.com/purchase_info/index.html
http://www.acterna.com/global_locator/global_contacts/index.html
http://www.acterna.com/careers/index.html
http://www.acterna.com/forms/survey_form.html
http://www.acterna.com/site_map/index.html
http://www.acterna.com/forms/contact_form.html
http://www.acterna.com/privacy_information/index.html
complete text as a PDF file

Embedded Secure Document

The file http://www.acterna.com/downloads/white_papers/telecom_and_datacom/netapps1_wp.pdf is
a secure document that has been embedded in this document. Double click the pushpin to view.

Wandel & Goltermann
Communications Tes t S olutions

http://www.wg.com Measuring Network Application Performance
Part 1: A Client’s Perspective

When you stop to think about it, metrics like bandwidth utilization, protocol
distribution, errors, or percentage of broadcast traffic don’t gauge a network’s true
performance. Sure, those things are important and are all pieces of the puzzle, but the
complete picture is simply what level of service the network is providing to its users. To
the user, how long it takes for a document to open or a page to draw is the definitive
measure of the network’s (and the network manager’s) performance. Brief informal
interviews with key network users can give a good overall picture and reality check
about how the network is actually performing.

While users’ perceptions of network performance are invaluable, it is also good to
measure a specific application’s performance characteristics as a baseline for
quantifying the impact of optimization techniques or future upgrades. The goal of any
baseline measurement is to establish a solid point of reference for future comparison. An
application-performance measurement should quantify the total time required for a
specific transaction within a specific application, e.g. opening a document with a server-
based Microsoft Word application. In this case, a specific document can be created and
saved for future use in order to produce repeatable results.

Essentially, a measurement of the duration of time required for the transaction (the
document to open) is all that is necessary to provide a reference or baseline against
which to compare in the future, provided the same document is used for each
measurement. This process indirectly measures the throughput of the application data
through the network, and this and other performance measurements can easily be
performed with a protocol analyzer by capturing the frames transferred between the
client and host. Address filtering should be employed so that no superfluous network
traffic is included.

Figure 1

Figure 1 is a frame summary decode captured on the client segment of the end of a
transaction initiated by opening an e-mail using Lotus cc:Mail. By utilizing the relative-
time feature of a protocol analyzer, referencing the beginning of the transaction and
scrolling to the point where the transaction ends, we see that the entire operation took
317.4 milliseconds. That’s all the information required to make this measurement again
in the future and compare performance. Going a little deeper, the cumulative bytes

:KLWH 3DSHU

Wandel & Goltermann
Communications Tes t S olutions

http://www.wg.com feature shows that a total of 15,511 bytes were transferred. Some simple math (15,511
bytes / 317.4 ms) reveals the overall throughput rate in bytes per second for this
transaction. This represents not only the transfer of application data, but also the total
bi-directional communication, including client requests, etc. Due to constantly varying
network load, this measurement should be made more than once per session to ensure
the result is indicative of typical network operation.

What if you suspect that performance isn’t what it should be? How do you find the
culprit? Where is the bottleneck? Many factors can affect network application
performance, and they’re not all related to the network.

Server and client CPU power, RAM, operating systems, and the application software
itself are examples of non-network contributing factors. The Network Interface Card
(NIC) and whether it’s PCI-or ISA-based, as well as protocol stack parameters within
the machine, are examples of network-related factors that reside physically within the
server and clients. Network access contention, propagation delay and router, bridge and
switch latencies are purely network-based limitations to application performance.

The next step is to quantify the contributing effect of each network component involved
in passing the data between client and server to determine the source of any excessive
delays. This includes the client machine, the server, and any interconnect devices in
between. These measurements are performed by recording the transaction with a
protocol analyzer, first from the segment to which the client is attached. If large delays
between packets are present (more than a few milliseconds for same-segment LAN
connections), note if the client (delay between server reply and client request) induces
them. If not, then they are caused by either the server, network contention or network
interconnection devices. Since we are now attempting to segment the total delay into its
contributing components, effectively isolating the causes, we are no longer measuring
total application performance but are entering the domain of troubleshooting
application-performance problems.

Figure 2

Sounds straightforward, right? Just measure the delays of the packets and voila, there’s
the problem. Not exactly. In reality, most network application transactions include
multiple operations. Figure 2 shows a trace of a different portion of the same e-mail
operation shown in Figure 1, but with the display reconfigured to show delta time and
frame size.

Wandel & Goltermann
Communications Tes t S olutions

http://www.wg.com

In this portion of the transaction, which consists of typical “ping-pong” Novell transfers,
the delay between frames 22114 and 22115 is nearly three times that of any other
displayed delta time. Is something wrong? A quick look further into the NCP trace
reveals that the file handle of the client request changes at this point (indicating it is
requesting data from a different file on the server). Therefore, this difference in delay
can almost assuredly be attributed to client “think” time. In fact, the action of opening a
single text-based e-mail caused three files on the server to be opened and read. Upon
examining the entire trace, we see four instances of large delays by the client: when
switching file handles and just before starting the burst mode transmission near the end.
These four instances total more than 200 milliseconds, essentially 2/3 of the entire 317-
millisecond transaction.

Does this mean there is anything wrong with the client? No. However, it does mean that
a client performance upgrade will probably do more to speed up this transaction than
anything that could be done to the network or server. If the client machine is already
reasonably powerful and utilizing the latest version of the application software, then
there may not be much room for improvement in this case. Even the fastest client
machine is going to take time to work through the application software and will only
make requests from the server when the application software asks for them.

What if we had found the majority of delay was not client-based but from the other side?
The next article will consider server- and network-induced performance issues.

© 1997 Wandel & Goltermann, Inc. Written by Alan Chapman, WGUSA Professional Services

netapps1_wp.pdf

Global
Global Home > Technical Resources > White Papers View Printable Page

App Notes
Newsletter Library

Pocket Guides
Posters

Tech Links
Troubleshooting

White Papers

"Network Applications: Are They Performing?"

Part 2: The Server vs the Network

a white paper by Alan Chapman

"Why is the network so slow?" Network managers hear it
every day.

In the second of
two white papers
that examine the
performance of
network
applications,
Alan Chapman,
manager of
WGUSA’s
Professional
Services group,
considers server- and network-induced performance issues.

The first installment looked at application performance from
the client perspective.

Adobe PDF Format

complete text as a PDF file (29K)

Site Map Contact Us Privacy Information © Copyright 2001 Acterna, LLC. All rights reserved.

http://www.acterna.com/index.html
http://www.acterna.com/index.html
http://www.acterna.com/index.html
http://www.acterna.com/technical_resources/index.html
http://www.acterna.com/includes/printview.asp?URL=http://www.acterna.com/technical_resources/white_papers/perform2.html
http://www.acterna.com/products/index.html
http://www.acterna.com/services/index.html
http://www.acterna.com/customer_care/index.html
http://www.acterna.com/training/index.html
http://www.acterna.com/about_us/index.html
http://www.acterna.com/technical_resources/index.html
http://www.acterna.com/technical_resources/application_notes/index.html
http://www.acterna.com/technical_resources/newsletters/index.html
http://www.acterna.com/technical_resources/pocket_guides/index.html
http://www.acterna.com/technical_resources/posters/index.html
http://www.acterna.com/technical_resources/technical_links/index.html
http://www.acterna.com/technical_resources/troubleshooting/index.html
http://ir.acterna.com/
http://www.acterna.com/forms/contact_form.html
http://www.acterna.com/purchase_info/index.html
http://www.acterna.com/global_locator/global_contacts/index.html
http://www.acterna.com/careers/index.html
http://www.acterna.com/forms/survey_form.html
http://www.acterna.com/site_map/index.html
http://www.acterna.com/forms/contact_form.html
http://www.acterna.com/privacy_information/index.html
complete text as a PDF file

Embedded Secure Document

The file http://www.acterna.com/downloads/white_papers/telecom_and_datacom/netapps2_wp.pdf is
a secure document that has been embedded in this document. Double click the pushpin to view.

Wandel & Goltermann
Communications Tes t S olutions

http://www.wg.com Measuring Network Application Performance
Part 2: The Server vs. the Network

In Part 1 of Measuring Network Application Performance, we described how to conduct
an overall performance measurement from the client side. In addition, we examined
captured data from an e-mail transaction that we determined indicated that the majority
of delay was due to the client and was not specifically network related. What if, by
examining the packet timestamps, we had determined the majority of delay in the
transaction was not from the client but from the other direction? How then could we
isolate the largest contributing factor, be it the network - which for the purposes of this
paper we will describe as one or more packet forwarding devices in the data path - or the
server itself? If it is the network, can we determine which packet forwarding device is
primarily responsible? Once the bottleneck (if there is one) is found, what, if anything,
can be done to improve the situation? In Part 2 we will attempt to answer these
questions.

Up to this point, we’ve focused on delay issues. To the end user, the bottom line is how
long it takes network transactions to happen. It is important, however, that we don’t
think only in terms of packet delay or latency, because other issues can significantly
affect the duration of a network transaction, such as application- or network-layer
retransmissions by connection-oriented protocols. These can occur when one side either
detects out-of-sequence packets or determines (rightly or wrongly) that the connection
has been dropped due to the amount of time it has been waiting for the next packet it
expects. This is frequently due to network congestion or misconfiguration of protocol
parameters. Therefore, although we will not go further into the causes and solutions for
retransmissions or other errors, it is important to look for obvious problems in the data
trace before focusing entirely on measuring application performance and identifying
bottlenecks. For the remainder of this paper, however, we will address the issues
surrounding application-performance measurement on otherwise normally functioning
or “error-free” network transactions.

How can we distinguish between delay caused by the server versus that caused by the
network devices? By far the most accurate and straightforward method is simply to
measure on both sides of the network simultaneously and compare the timestamps of the
packets. This can easily be done with a synchronized dual analyzer like the WG DA-
30C or two WG Domino protocol analyzers controlled from the same PC. If you
have only a single analyzer, or the network topological layout prevents this, then there is
an alternative method that isn’t as accurate and takes a bit more time, but nonetheless
will produce results usable for this purpose.

December 1997:KLWH 3DSHU

Wandel & Goltermann
Communications Tes t S olutions

http://www.wg.com

Figure 1

RR

Client
Server

Analyzer

A B

Referring to Figure 1, if we use an analyzer to record a network transaction on the client
side (Point A) as we did in Part 1, but this time note large delays between client requests
and server responses, we know to focus any possible optimization strategies on the
server side. But how can we isolate the source of those delays to determine if it is the
network or the server? If an analyzer is used to record an identical data transaction from
point B, a separate data capture file will be created. Even though the data captures were
performed at different times, we can use some simple math to isolate the delay
components. Assuming the transactions are identical, the chief source of inaccuracy in
this method will be any difference in network load (from other traffic) that could have
affected either transaction due to network access contention or device congestion.
Therefore, these measurements should be made more than once (on each side) to assure
the result is indicative of normal network operation and not unduly influenced by a large
simultaneous file transfer, for example. For the purposes of comparison, choose one data
capture each from both point A and B in which the transactions’ overall durations are
close to identical.

The next task is to find the request/response pairs in the file from point A that show
large server-side delays. This technique is covered in Part 1. Next, open and examine
the data file from point B and examine the same request/response pairs. This can best be
done by invoking the “find” feature to search for a user data pattern from the packet in
the A file, or by utilizing the “referenced” timestamp feature and placing the zero
reference point at the beginning of the transaction in both files. In the case of the latter,
you must scroll down to the same referenced timestamp in the B file and visually find
the same request/response pair from there. This whole process is easily done with an
analysis application, like WG Examine, that allows having more than one capture file
open simultaneously, but any Microsoft Windows-based analysis application that
allows cutting and pasting (for the pattern search) can be used without a great deal of
trouble.

Having identified the same request/response pairs in both files, we can now determine
the delay induced by the network by noting the timestamps of the request (A1) and
response (A2) on the client side versus the request (B1) and response (B2) as seen from
the server side of the network. With A2-A1 representing total delay seen by the client
and B2-B1 representing total server delay or server “think time,” then A2-A1 - B2-B1
gives us the network-induced delay. It should now be clear where the cause of the large
delays lie.

Wandel & Goltermann
Communications Tes t S olutions

http://www.wg.com

If the server is the problem, what can be done to improve the situation? Assuming
reasonable care was taken, as mentioned above, to ensure this transaction was not
unduly affected by protocol errors or other simultaneous large transactions, then it may
be worthwhile to look at improving the server’s performance. Tthere are two areas to
consider: the server’s network access and the server’s internal horsepower. While the
intended scope of this paper does not permit analyzing these two issues in depth, if the
server shows long “think time” delays, then upgrading its processing power, RAM, etc.
will likely have the most impact.

If the server appears speedy enough but the packets are being held up along the way,
then it’s necessary to identify any bottlenecks in the network itself. The same technique
described above to divide the total delay into separate components can also be used
between routers and other devices in the network to identify the packet-forwarding delay
through each device. Of course, we’re not after microsecond accuracy here. If we were,
this method would not suffice. We are only trying to show an average delay figure for
each of the network devices in order to identify where large delays are occurring. If a
particular network device is found to be the source of most of your delay problems,
either replacing (upgrading) that device or upgrading or restructuring the network to
balance the load more efficiently are likely solutions.

In describing these measurements, I have deliberately avoided using the term “latency,”
even though it is the accepted term in the network analysis industry for describing the
time required for packets to transverse devices like routers, bridges, switches, etc. This is
because latency, as defined by the IETF (RFC 1242), specifically measures the time for a
one-way trip through the device, whereas we are measuring each device’s contribution
to the round-trip delay experienced by the client.

Before wrapping up your network-application performance measurements for the time
being, remember to document what you found and preserve the ability to make the exact
same measurements again. For example, if you were using a file transfer, remember to
save a copy of the file you used, and if necessary, the application that transferred it. This
will allow trend analysis to be performed next time these measurements are performed,
giving a clear indication of how much better (or worse) your network is performing.
Happy networking!

1997 Wandel & Goltermann, Inc. Written by Alan Chapman, WG Professional Services

netapps2_wp.pdf

Week 15: TCP/IP security
Fact of the week

Open protocols, transmitted as plain text are a problem for security. With ever greater
numbers of `smart' products on the market that makes security all the more important. Early
mobile phones could be tapped from passing cars. The thieves could capture their codes
and program new phones with these. They would then sell these on the black-market so
that others could phone on the bill of innocent passers-by. Increasingly companies are
using cheap offshore programming help in countries like India, Hungary, Ireland, Israel and
Singapore. All this makes the security of remote services extra important.

IPV4

The internet protocol was conceived as a military project in the '70's. The aim
was to produce a routable network protocol. The version of this protocol in use
today is version 4, with a few patches. Let's revise some of the basics of IPV4,
which we discussed earlier in the operating systems course. TCP/IP is a
transmission protocol which builds on lower level protocols like ethernet and
gives it extra features like `streams' or virtual circuits, with automatic
handshaking. UDP is a cheaper version of this protocol which is used for services
which do not require connection-based communication. The TCP/IP protocol
stack consists of several layers:

 Applications

 (telnet,ftp,http..)

 / \
 TCP UDP

 -
 ROUTING:: IP ICMP

 -

 Hardware/ether

At the application level we have text-based protocols like telnet and FTP etc. Under these
lies the TCP (Transmission Control Protocol) which provides reliable connection based
handshaking, in a virtual circuit. TCP and UDP introduce the concept the port and the socket
(=port+IP address). We base our communications on these, and thus we also base the
security of our communications on these. Under TCP/UDP is the IP transport layer, then
ethernet or token ring etc. ICMP is a small protocol which is used by network hardware to

http://www.iu.hio.no/~mark/lectures/index.html
http://www.iu.hio.no/~mark/img/tcp-segment.jpg
http://www.iu.hio.no/~mark/img/udp-message.jpg
http://www.iu.hio.no/~mark/img/ipv4-datagram.jpg

send control and error messages as a part of the IP protocol set. e.g. ping uses ICMP

With all of its encapsulation packaging, a TCP/IP packet looks like this:

<--

ethernet
header

IP
header

TCP
header

DATA
ethernet
trailer

Header structure is added for each level of the protocol creating packets of the form shown
above. In addition to this form of packaging, special packets can be packed several times in
order to perform efficient distribution. For instance, the MBONE (multicast backbone)
network spreads encapsulated multicast packets to local networks without having to send
multiple packets. They are first sent to a multicast router and there unpacked, revealing the
addresses of local hosts which should receive the packets.

Network crackers have been clever in exploiting problems in the design and implementation
of TCP/IP for their own purposes. In order to protect ourselves against the problems which
these people cause, we have to understand a few things about how the TCP/IP protocol
works. This is fairly complicated, but we can summarize the important elements.

Let us consider telnet as an example and see how the telnet connection looks at the TCP
level.

 TELNET CLIENT TELNET SERVER
 (tcp-socket)
 (random port) (port 23)

 send
 --------------->

 recv
 <--------------

Telnet opens a socket from a random port address (e.g. 54657) to a standard well-known
port (23) where the telnet service lives. The combination of a port number at an IP address,
over a communication channel is called a socket. The only security in the telnet service lies
in the fact that port 23 is a reserved port which only root can use. (Ports 0-1023 are
reserved).

Filtering routers

Modern routers are programmable devices which allow ACLs (Access Control

http://www.iu.hio.no/~mark/lectures/sysadm/html/IPheaders.html
http://www.iu.hio.no/~mark/lectures/sysadm/html/TCP-IP.dump.html

Lists) and access control through tables. We can make rules which determine
who is allowed to send protocols through the router. Filtration can be based on
various criteria:

● Protocol type (TCP/UDP/ICMP)
● Whether traffic is incoming or outgoing
● IP address (Source or destination)
● Port number (Source or destination)
● SYN flag in the TCP header (see below)

To understand more about this we need to revise some basics about TCP/IP.

TCP circuits

The TCP protocol guarantees to deliver data to their destination in the right
order, without losing anything. In order to do this it breaks up a message into
segments and numbers the parts of the message according to a sequence. It
then confirms that every part of that sequence has been received. If no
confirmation of receipt is received, the source retransmits the data after a
timeout. The TCP header contains handshaking bits. Reliable delivery is achieved
through a three-way handshake. Host A begins by sending host B a packet with
a SYN (synchronize) bit set and a sequence number. This provides a starting
reference for the sequence of communication. Host B replies to this message
with a SYN,ACK which confirms receipt of an open-connection request and
provides a new sequence number which confirms identity. Host A acknowledges
this. Then B replies with actual data. We can see this in an actual example.

 Client Server
 SYN,seq=1000
 active open ----------------------------> passive open

 syn,seq=2000,ack=1001
 <---------------------------

 ack=2001, seq=3000,len=0
 ---------------------------> ready to send

 ack=seq+len, send data
 <---------------------------

 ack=seq+len, fin,seq=9000
 client close ---------------------------->

 ack=9001, fin,seq=10000
 <---------------------------- server close

http://www.iu.hio.no/~mark/lectures/sysadm/html/TCP-example.html

 ack=10001
 -----------------------------> connection closed

This handshaking method of sending sequence numbers with acknowledgement
allows the TCP protocol to guarantee and order every piece of a transmission.
The ACK return values are incremented by one because in earlier
implementations this would be the next packet required in the sequence. This
predictability in the sequence is unfortunately a weakness which can be
exploited by so-called sequence guessing attacks. Today, in modern
implementations, sequences numbers are randomized to avoid this form of
attack. Older operating systems still suffer from this problem. Future
implementations of TCP/IP will be able to solve this problem by obscuring the
sequence numbers entirely through encryption.

The TCP handshake is useful for filtering traffic at the router level, since it gives us
something concrete to latch onto. TCP would rather drop a connection than break one of its
promises about data integrity, so if we want to block telnet connections, say, we only have to
break one part of this fragile loop. The usual strategy is to filter all incoming connections
which do not have their ACK bit set, using router filtering rules. This will prevent any new
connections from being established with the `outside'. We can, on the other hand, allow
packets which comes from inside the local network. This provides a simple router-level
firewall protection. It is useful for stopping IP spoofing attempts. The UDP protocol does not
have SYN,ACK bits and so it is more difficult to filter.

IP spoofing

The cleverest system crackers are those who can fake IP packets. The idea is
that those who can manage to spoof an IP packet can make it appear to come
from a different host, preferably one which has special privileges. This can
obviously be used to circumvent access control mechanisms.

There are two ways we can do this. The first is at the application level. Some programs
restrict access on the basis of the hosts packets come from. By providing the identity of
another machine it might be possible to trick the access controls. This can be checked fairly
easily by cross checking that the caller is who they actually claim to be. Double, reverse
DNS lookup is a typical strategy. Also a direct connection to the claimed caller is possible.
The ident service (pidentd) can be used to verify the identity of a caller at the TCP level, if
the caller is running the service (it is not standard). A third possibility is to use a password or
some other shared secret. The other possibility is to use the protocol level.

TCP

A clever sender can forge IP addresses in the IP header. In these cases TCP
connections can be stopped by a filtering router. For example. we can block IP
addresses which appear to come from inside a firewall but actually come from
outside (these must be forgeries). Another type of attack is sequence guessing. Here
a TCP circuit can be broken in the middle by address forging and by guessing the
simple sequence numbers of a TCP circuit, in order to hijack the connection (often
combined with an attack which takes down the true machine). Newer
implementations randomize sequence numbers to avoid this. Another form of TCP
attack is SYN-flooding. This is a Denial of Service attack prevents a host from using
TCP connections. Host A sends host B a large number of SYN packets (open
connection) which appear to come from the address of host C which is not on-line.
Since host C cannot respond with an ACK, these connections build up (until they time-
out) thus filling up the TCP table. Once this is full, the host can no longer receive
more TCP communication. It is important to take host C off-line, otherwise the forged
address would be detected and host C would send and ICMP reset to say that it did
not initiate the connection itself. This sort of attack could be stopped if all the world's
routers refused to send packets with forged source-addresses.

UDP

The UDP protocol is more primitive than TCP and is therefore easier to spoof. A
special type of attack which is now famous for creating the 12 hour attack on NT
machines in 1998 is called Teardrop. In a Teardrop attack, UDP fragmentation is
used to create a kernel panic. Fragmentation normally occurs when packets are
routed. A packet can be fragmented in order to optimize transfer conditions to a
particular network layer protocol. Normally this will look like this:

 | UDP frag #1 | size = 100 - 0

 | UDP frag #2 | size = 200 - 100

 0 100 200

The fragments are always reconstructed at their final destination. The size of the
fragments (in faulty implementations) is worked out by subtracting the previous offset
from the new one. This value is used to allocate memory for the fragment at
destination. In a Teardrop attack, the fragments are forged and made to look like this:

 | UDP frag #1 | size = 120 - 0

 | UDP frag #2 | size = 90 - 120

 0 50 100 120

The final packet is calculated to have a negative size. The destination host tries to
allocate -40 bytes and this crashes the kernel.

ICMP

Another protocol which works in parallel with IP is the ICMP control protocol. This is
used to send control messages (like reset) and error messages between the network
hardware. It can also be used for Denial of Service attacks. External routers can
safely block many ICMP packets, like ping. The Smurf attack is an ICMP Denial of
Service attack.

Network forensics and intrusion detection

A new technology which is starting to emerge is that of Intrusion Detection. The
idea is to detect attempts at network attack, as they happen, or in the final
instance afterwards. See, for instance, Network Flight Recorder. By looking at
every packet on the network it is hoped to see suspicious looking activity, port
scanning attempts and bad protocol usage. This requires a lot of resources (disk
and CPU) and it has two fundamental hindrances:

● Fragmentation: Packets which get fragmented are only reconstructed at the end
destination. If a suspicious packet is fragmented in an unfortunate way, pattern
matching algorithms will not be able to see the bad stuff. A clever attacker could
always arrange for spoofed packets to be fragmented at source.

● Switching/Routing: Switches and routers limit the spread of traffic to specific cables.
An intrusion detection system needs to see all packets in order to cover every attack.

Password sniffing (telnet/ftp)

Many communications standards were introduced before it was possible for
normal users to have control of their own computers. Any security in these
protocols was based on the fact that normal users would never have
administrator (root) privileges. Telnet and ftp are examples of this. These
programs send passwords in plain, unencrypted text, for anyone to see. To
prevent this it is possible to use a system of one-time passwords. This has been
adopted by many banks offering Internet banking.

One-time (disposable) passwords are passwords which are valid only once. If an intruder
manages to read a one-time password by tapping the network, then it is of no use, since it is
invalid as soon as it has been used. The idea is not unlike the idea behind TCP sequence
numbers. The point behind this scheme is to use a private password to generate a sequence
of throw-away passwords. As long as both sender and destination hosts know the private
passwords, they can use it to encrypt and decrypt a random string. The string must be

http://www.nfr.com/

randomized or sequenced to avoid replay attacks, but the main point is that it is not the
password itself. A string encrypted with the true password will only be decrypted by the true
password, so it is possible to verify that both sender and destination agree on the password
without ever having to send it over the network.

There are various systems which use this technique, e.g. MIT's kerberos. Here is one of the
original examples from AT&T:

S/KEY one-time passwords

You wish to establish a connection between
host A and host B

You have previously set a password on
host B.

You telnet to host B
The Login prompts you with an encryption
string: 659 ta55095

You use "659 ta55095" pluss your own
password to create a key on host A:

key 659 ta55095
password: passord på B
EASE FREY WRY NUN ANTE POT

You type in your one-time password for telnet

"EASE FREY WRY NUN ANTE POT"
Access granted.

The peculiar string generated by this process is meant to be easy to type in. Today newer
systems can be built which do all of this behind the scenes. The advantage of this system is
that no real secrets are ever sent over the network. Instead we make used of a shared
secret to send mutually understood data over the net.

Thought of the week

Many of the forms of attack above would be impossible if the underlying IP
packets were private (encrypted), ie. if they could not be read by everyone.

Mark Burgess
Last modified: Thu Apr 27 12:37:26 MET DST 2000

mailto:mark@iu.hio.no

Linux 2.0.32 will include the IP frag patch for this exploit. Microsoft has
a patch that will correct this problem available at :

ftp://ftp.microsoft.com/bussys/winnt/winnt-public/fixes/usa/nt40/hotfixes-
postSP3/simptcp-fix

Date: Thu, 13 Nov 1997 22:06:15 -0800
From: G P R
Subject: Linux IP fragment overlap bug

 Helu.

 I wrote this post a while back when the bug was first discovered. It
seems as though this bug (and patch) has gotten out, so here it is, in it's
entirety.

 As it happens, Linux has a serious bug in it's IP fragmentation module.
More specifically, in the fragmentation reassembly code. More specifically,
the bug manifests itself in the `ip_glue()` function....

 When Linux reassembles IP fragments to form the original IP datagram, it
runs in a loop, copying the payload from all the queued fragments into a newly
allocated buffer (which would then normally be passed to the IP layer proper).
>From ip_fragment.c@376:

 fp = qp->fragments;
 while(fp != NULL)
 {
 if(count+fp->len > skb->len)
 {
 error_to_big;
 }
 memcpy((ptr + fp->offset), fp->ptr, fp->len);
 count += fp->len;
 fp = fp->next;
 }

 While it does check to see if the fragment length is too large, which would
have the kernel copy too much data, it doesn't check to see if the fragment
length is too small, which would have the kernel copy WAY too data (such is the
case if fp->len is < 0).

 To see when this happens, we need to look at how Linux adds IP datagrams
to the reassembly queue. From ip_fragment.c@502:

 /*
 * Determine the position of this fragment.
 */

 end = offset + ntohs(iph->tot_len) - ihl;

 Ok. That's nice. Now we have to look at what happens when we have
overlaping fragments... From ip_fragment.c@531:

 /*
 * We found where to put this one.
 * Check for overlap with preceding fragment, and, if needed,
 * align things so that any overlaps are eliminated.
 */

 if (prev != NULL && offset < prev->end)
 {
 i = prev->end - offset;
 offset += i; /* ptr into datagram */
 ptr += i; /* ptr into fragment data */
 }

 If we find that the current fragment's offset is inside the end of a
previous fragment (overlap), we need to (try) align it correctly. Well, this
is fine and good, unless the payload of the current fragment happens to NOT
contain enough data to cover the realigning. In that case, `offset` will end
up being larger then `end`. These two values are passed to `ip_frag_create()`
where the length of the fragment data is computed. From ip_fragment.c@97:

 /* Fill in the structure. */
 fp->offset = offset;
 fp->end = end;
 fp->len = end - offset;

 This results in fp->len being negative and the memcpy() at the top will end
up trying to copy entirely too much data, resulting in a reboot or a halt,
depending on how much physical memory you've got.

 We can trigger this normally unlikely event by simply sending 2 specially
fragmented IP datagrams. The first is the 0 offset fragment with a payload of
size N, with the MF bit on (data content is irrelevant). The second is the
last fragment (MF == 0) with a positive offset < N and with a payload of < N.

 Every linux implementation I have been able to look at seems to have this
problem (1.x - 2.x, including the development kernels).

 Oh, by the way, NT/95 appear to have the bug also. Try sending 10 - 15 of
these fragment combos to an NT/95 machine.

 Special thanks to klepto for bringing the problem to my attention and
writing the initial exploit.

 route|daemon9 route@infonexus.com

------[Begin] -- Guby Linux ---

/*
 * Copyright (c) 1997 route|daemon9 11.3.97
 *
 * Linux/NT/95 Overlap frag bug exploit
 *
 * Exploits the overlapping IP fragment bug present in all Linux kernels and
 * NT 4.0 / Windows 95 (others?)
 *
 * Based off of: flip.c by klepto
 * Compiles on: Linux, *BSD*
 *
 * gcc -O2 teardrop.c -o teardrop
 * OR
 * gcc -O2 teardrop.c -o teardrop -DSTRANGE_BSD_BYTE_ORDERING_THING
 */

#include
#include
#include

#include
#include
#include
#include
#include
#include
#include
#include

[snip...]

 fprintf(stderr, "teardrop route|daemon9\n\n");

[snip...]

 fprintf(stderr, "Death on flaxen wings:\n");
 addr.s_addr = src_ip;
 fprintf(stderr, "From: %15s.%5d\n", inet_ntoa(addr), src_prt);
 addr.s_addr = dst_ip;
 fprintf(stderr, " To: %15s.%5d\n", inet_ntoa(addr), dst_prt);
 fprintf(stderr, " Amt: %5d\n", count);
 fprintf(stderr, "[");

[snip...]

------[End] -- Guby Linux --

 And the patch:

------[Begin] -- Helu Linux ---

--- ip_fragment.c Mon Nov 10 14:58:38 1997
+++ ip_fragment.c.patched Mon Nov 10 19:18:52 1997
@@ -12,6 +12,7 @@
 * Alan Cox : Split from ip.c , see ip_input.c for history.
 * Alan Cox : Handling oversized frames
 * Uriel Maimon : Accounting errors in two fringe cases.
+ * route : IP fragment overlap bug
 */

 #include
@@ -578,6 +579,22 @@
 frag_kfree_s(tmp, sizeof(struct ipfrag));
 }
 }
+
+ /*
+ * Uh-oh. Some one's playing some park shenanigans on us.
+ * IP fragoverlap-linux-go-b00m bug.
+ * route 11.3.97
+ */
+
+ if (offset > end)
+ {
+ skb->sk = NULL;
+ printk("IP: Invalid IP fragment (offset > end) found from %s\n",
in_ntoa(iph->saddr));
+ kfree_skb(skb, FREE_READ);
+ ip_statistics.IpReasmFails++;
+ ip_free(qp);

+ return NULL;
+ }

 /*
 * Insert this fragment in the chain of fragments.

------[End] -- Helu Linux --

EOF

--
 Corporate
 Persuasion
 Through
 Internet
 Terrorism.

 Empirix > Voice Network Test > Products > ANVL Automated Network Test

ANVL™
Automated Network Validation Library

Automated Network Validation Library (ANVL) is a software testing tool that
validates the protocol implementations and operational robustness of
networking devices including layer 3 switches, high-density RA servers,
backbone routers and even end nodes. Running on a user's workstation,
ANVL quickly and accurately determines how well a network device's
protocol implementation adheres to the specifications for the protocol.

Because of its versatility, ANVL has become an essential tool for both
product developers and quality assurance engineers. Vendors like Cisco,
3Com, Nortel and Lucent depend on ANVL to thoroughly test more than 20
different protocols on over hundreds of different devices.

Over 100 networking vendors worldwide use ANVL to ensure the protocols in
their products are implemented correctly. ANVL is the industry standard for
protocol interoperability testing, providing functional, negative, and regression
stress testing in one automated software package.

ANVL saves time.

In product development and testing, ANVL allows vendors to shorten their
release time and get their products into the marketplace sooner. ANVL can
be used to streamline the development of new protocol software by providing
fast and highly reliable unit testing. It also lets quality assurance staff run
tests at any time, even overnight, saving valuable time in the testing of new
products.

ANVL saves money.

By reducing the demands to continually expand the test network. A single
ANVL-equipped workstation can easily take the place of a large, multi-node
test network that includes several different types of network devices. The cost
of the equivalent test network could easily exceed a quarter of a million
dollars.

ANVL simplifies testing.

ANVL provides comprehensive pre-written test suites for today's most widely
used protocols. Typical of the test suites available are those for the PPP
protocol family, Border Gateway Protocol (BGP4), and Open Shortest Path
First Protocol (OSPF). A complete listing of all current ANVL test suites is
available at the end of this product description.

ANVL increases confidence.

ANVL increases confidence in product quality by enabling extensive and

Telephony Feature
Test
Telephony
Performance Test
VoIP Test
Protocol Conformance
Test
PacketSphere

http://www.empirix.com/empirix/default.html
http://www.empirix.com/empirix/support/default.html
http://www.empirix.com/empirix/about/contact.html
http://www.empirix.com/Empirix/News+And+Info/default.asp
http://www.empirix.com/empirix/partners_global.html
http://www.empirix.com/Empirix/About/Careers.asp
http://www.empirix.com/empirix/about/default.html
javascript:void(null);
javascript:void(null);
javascript:void(null);
http://www.empirix.com/empirix/default.html
http://www.empirix.com/empirix/voice+network+test/default.html
http://www.empirix.com/empirix/voice+network+test/products/default.html
http://www.empirix.com/Empirix/Web+Test+Monitoring/Products/choose+form.html
http://www.empirix.com/ecd/downloads/bean-test
http://www.empirix.com/ecd/forms/FirstACT/
http://performance.empirix.com/TryOneSight/
http://www.empirix.com/ecd/downloads/callflow/
http://www.empirix.com/ecd/downloads/callmaster/
http://www.empirix.com/ecd/downloads/H323/
http://www.empirix.com/NR/Empirix/NCResources/anvl+datasheet+new.pdf
http://www.empirix.com/empirix/voice+network+test/default.html
http://www.empirix.com/empirix/voice+network+test/products/telephony+feature+test.html
http://www.empirix.com/empirix/voice+network+test/products/telephony+feature+test.html
http://www.empirix.com/empirix/voice+network+test/products/telephony+performance+test.html
http://www.empirix.com/empirix/voice+network+test/products/telephony+performance+test.html
http://www.empirix.com/empirix/voice+network+test/products/voice+quality+test.html
http://www.empirix.com/empirix/voice+network+test/products/protocol+conformance+test.html
http://www.empirix.com/empirix/voice+network+test/products/protocol+conformance+test.html
http://www.empirix.com/empirix/voice+network+test/products/packetsphere.html
http://www.empirix.com/empirix/voice+network+test/resources/default.html
http://www.empirix.com/empirix/voice+network+test/news+and+info/default.asp
http://www.empirix.com/empirix/voice+network+test/support/default.asp
http://www.empirix.com/empirix/voice+network+test/partners/default.asp
http://www.empirix.com/empirix/voice+network+test/success+stories/default.html
mailto:sales@empirix.com

thorough testing to be performed automatically and without supervision. The
result is higher levels of product quality than can be achieved with manual
testing.

With ANVL's test results, you can:

● Determine exactly where a device's protocol software does and does
not meet the specification.

● Observe how well the device will handle traffic from non-complying
network components.

● Determine what effects new development has on existing code
through regression testing.

The ANVL Advantage: Flexible, Intelligent Testing

ANVL contains unique features not found in other test tools or test processes.
These features have been cited by product engineers as invaluable for
testing during development, as well as by quality assurance engineers for QA
testing.

ANVL provides flexible, protocol-level testing

By testing at the protocol level, ANVL is able to control very closely the
packets it sends out in order to test a desired situation. For instance, it is able
to send out incorrectly formatted packets to test negative situations. It is also
able to simulate multiple network nodes, as in stress tests, since it controls
the source address of every packet that is sent.

ANVL sends, receives, and reacts to packets

ANVL performs its tests as a dialogue: it sends packets to the device being
tested, receives the packets sent in response, and analyzes the response to
determine the next action to take. This feature allows ANVL to test
complicated situations or reactions in a much more intelligent and flexible
way than can be done by simple packet generation and capture devices.

ANVL can test timed events

Timers implemented in ANVL allow thorough testing of timed events, such as
routing updates.p

ANVL requires minimal equipment

All a user needs to run ANVL tests is a UNIX or Windows workstation, and a
connection to the device to be tested. Ease of set-up makes it possible for a
user to be running productive tests soon after ANVL is installed.

Users can specify the logging level

By choosing high, medium, or low level output, users can determine how
much information to receive about the test as it is being run. High level shows
only whether the test passed or failed, medium level gives status information
about the test events, and low level displays the actual packets being sent
and received.

ANVL is easy to extend

With a source license, a user can add new interface types, protocols, and/or
tests to their ANVL system.

Using ANVL Test Suites for Automated Testing

At ANVL's core is a library of test suites, each based on a specific network
protocol. By executing the tests within a given suite, the user is able to
determine how well a network protocol implementation conforms to the
specification for that protocol. To minimize the time and effort required to use
these tests, ANVL includes an automated test system that lets the user set

up and run any number of tests automatically.

A test suite typically includes three types of tests:

● Functional tests that assess conformance to a protocol specification.
● Negative tests that check how a product handles badly formatted

packets.
● Stress tests that indicate how well a device reacts to high traffic

situations.

Negative and stress tests play a key role in helping users evaluate how
smoothly and robustly a device will behave in real-world network
installations. With a comprehensive negative and stress test solution, a
network product vendor avoids the risk of shipping products that don't meet
performance expectations when installed in customer networks.

Test suites, which are stored in the workstation, are set up and executed
automatically by the automated test system, which also resides in the
workstation. The user can specify three different levels of test output, ranging
from basic pass/fail to comprehensive packet display. Depending on how the
protocol and the device under test is connected to the workstation, any of
three different test modes may be supported.

ANVL: The Key Is Automation

Automated test processes allow network vendors and purchasers to do more
testing with fewer resources. Each test that is written or obtained for an
automated test system can be used again and again. This allows companies
to do more testing with each release instead of less. With manual testing, as
new features are added, existing features are no longer tested, so less
testing is done with each release. Automated testing also allows a company
to test a product as many times as it wants without fear of burning out its
testing staff.

By automating its testing, a company will find it easier to scale up its
operations – all it has to do is add more equipment, not more people. Using
ANVL to automate network testing processes reduces equipment needs
overall, since ANVL can emulate the appearance of multiple nodes on its test
network. ANVL's protocol-level test suites also let a user send packets that
are hard or impossible to generate manually, resulting in much more
thorough testing.

ANVL Is Easy to Implement in Any Enviroment

ANVL's implementation is independent of the type of network being used, so
ANVL can run over many different network types. Supported interfaces
include Ethernet, serial line, and Sniffer-formatted capture files. In addition,
support is currently being added for ATM and Gigabit Ethernet.

ANVL is easy to integrate into existing test processes. Because it has a
command-line interface, ANVL can be used in conjunction with text-based
automation tools.

ANVL also supports multiple physical interfaces on a single test machine.
This makes it possible, for example, to execute tests that exercise two
different ports on a router or remote access server.

For more information about using ANVL to automate network test in your
environment, please see the ANVL FAQ.

ANVL Test Suites

IP Test Suites

● IP RIP (v1 and v2) Gateway
● OSPFv2 (RFC1583/2328)
● BGP4 (RFC1771)
● RMON (RFC1757/RFC1513)

http://www.empirix.com/empirix/voice+network+test/products/_anvl+faq.html

PPP Test Suites

● Basic PPP (with tests for LCP, PAP, and CHAP)
● IPCP (RFC1332)
● Multilink PPP (RFC1717/RFC1990)
● VJ Test Suite (TC/IP, RFC1144)
● Spanning Tree (IEEE 802.1d)

Multicasting Test Suites

● IGMP (RFC2236v2)
● DVMRP (IETF Draft 3)
● PIM (sold as one unit)
● Sparse Mode - IETF Draft#1v2
● Dense Mode - IETF Draft#3v2

TCP Test Suites

● Core (RFC 793, 1122)
● Advanced (RFC 2001, 2581, 1191, 2385)
● Performance (RFC 1323, 2018)

VPN Test Suites

● PPTP (IETF Draft 2)
● L2TP (RFC2661)
● IPSec AH (RFC2402/2401)
● IPSec ESP (RFC2406)
● IPSec IKE (RFC2409/2408)
● L2TPSec (RFC2661)

More detailed information about ANVL Test Suites is available here.

Development Toolkits

The following toolkits including protocols, state machines and several sample
tests:

● TCP Development Toolkit
● SNMP Development Toolkit

Supported Operating Systems/Platforms

● Sun Solaris 2.5 on Sparc
● Linux RedHat 6.0 on Pentium PC
● Windows NT-4.0 on Pentium PC

Supported Media/Link Types

● Ethernet, Gigabit Ethernet, and async serial available on all platforms
● Sync serial available on Linux
● ATM (OC-3) available on Linux and NT

home sitemap legal information privacy policy webmasters

http://www.empirix.com/empirix/voice+network+test/products/_anvl+test+suites.html
http://www.empirix.com/empirix/default.html
http://www.empirix.com/Empirix/Site+Map.asp
http://www.empirix.com/empirix/legal.html
http://www.empirix.com/empirix/privacy.html
mailto:webops@empirix.com

Notes on Texas Instruments Processors
Prof. Brian L. Evans

At present, TI is developing new processors within three digital signal processor families:

● TMS320C2000 (formerly known as TMS320C20)
❍ disk drives, e.g. Seagate

● TMS320C5000 (formerly known as TMS320C54)
❍ voiceband modems, e.g. modems by 3Com and the modem for the compact Sun-Denshi

Online Station for Playstation 2
❍ cell phone handsets, e.g. by Nokia and Ericsson
❍ portable MP3 players, e.g. Sanyo Internet audio player
❍ digital still cameras, e.g. Sony
❍ digital video, e.g. JVC's GR-DVM90 e-CyberCam

● TMS320C6000
❍ ADSL modems, e.g. TI's ADSL modems
❍ cell phone basestations
❍ modem banks
❍ laser printers

TI has produced many other families of digital signal processors which they still support but for which
they are not developing new members of the families. These families include the TMS32010,
TMS320C30, TMS320C40, TMS320C50, and TMS320C80. Note that the TMS32010 family does not
have a "C" in it because it was originally designed in NMOS and not CMOS.

Conventional Fixed-Point DSP Processors

The family of conventional fixed-point DSP processors includes the TMS32010, TMS320C20,
TMS320C50, TMS320C54, and TMS320C55. These processors have 16-bit data words and 16-bit
program words. The 10 (1982) and C20 (1985) fixed-point processors are being widely used in
control applications. The C203, a derivative of the C20, was released in 1995 in response to disk drive
manufacturers' needs. The C203 delivers 40 MIPS (80 MHz) and costs under $5.00 in volume. The 10
is widely used as essentially a powerful microcontroller. The C24 is dedicated for motion control.

The C54x is a smaller, low-power version of the C50 meant for use in wireless basestations and
handsets. The C54x instruction set is not compatible with the C50. The C54x reminds me of the
Motorola 56000 in that it can perform parallel reads:

● 2 data reads from block 1
● 1 data write to block 2

http://www.ti.com/sc/docs/news/2001/01015.htm
http://www.ti.com/sc/docs/news/2001/01015.htm
http://www.ti.com/sc/docs/news/2001/01015.htm
http://www.ti.com/sc/docs/news/2001/01015.htm

● 1 instruction fetch from block 3

The C54x has a special instruction for Viterbi decoding. Other features include three idle modes
(controlled by host processor) to preserve power consumption and flash memory (must write in 2
kword blocks). A C compiler exists. A low-cost C54x DSP Starter Kit (DSK) also exists. The C54x is
also used for servo-control in high-end disk drives.

A variation of the C54x, the C54xx family, has 8 Mwords of addressable memory due to the addition
of a page pointer. The TMS320C5416 has 128K words of on-chip SRAM and runs at 160 MHz.
Applications include Voice over Internet Protocol (VoIP), communications servers, PBX add-ons and
other computer telephony and customer premise equipment.

The C55 is in the C5000 family but has lower power consumption than the C54. The TMS320C5509
DSP is targeted for portable handheld Internet appliances. It has an extensive set of on-board
peripherals.

● Clock rate: 144/200 MHz (up to 288/400 MIPS)
● On-chip Memory: 128 kw RAM and 32 kw ROM
● Interfaces: USB 1.1 port, I2C, Memory Stick, MMC, SD, three serial ports
● Data converter: on-chip 10-bit ADC

The TMS320C5502 is a low-cost member of the C5000 family for personal systems at $9.95/unit in
quantities of 10,000 units:

● Clock rate: * 200 MHz (up to 400 MIPS)
● On-chip Memory: 32 kw DARAM and 16 kw ROM
● Interfaces: UART, I2C, three serial ports

Conventional Floating-Point DSP Processors

The first two TI floating-point DSP processors were the TMS320C30 (1988) and TMS320C40
processors. These two processors are very similar. The key difference is that the C40 has extra
communications features that allows it to be more easily used in parallel. The C44 is a scaled down
version of the C40.

The C30 is the base processor. A DSP Starter Kit (DSK) board with the C31 (August, 1996) sells for
$99. This is much cheaper than the $750 for the C30 evaluation module (EVM). Like the EVM, the
DSK does not come with a compiler. However, an extension to the GNU C compiler generates code
for the C30.

The TMS320C32 sells for $10 each with a volume purchase being required. The C32 is used in the
Concur Systems Inc. thin Internet data acquisition systems. The TMS320VC33 sells for $5. The 'C33
provides a full 1-Mbits of random access memory (RAM) and delivers 120 MFLOPS. A 150-MHz

http://www.ti.com/sc/033199
http://www.dspvillage.ti.com/c5509tol
http://www.dspvillage.ti.com/c5509tol
http://www.ti.com/sc/floating-point/
http://www.concursys.com/

version of the 'C33 is also available for $8.

No more C40 derivatives will be developed. The C40 was intended for use in parallel processing. The
fixed-point C80 family briefly superseded the C40 for parallel processing, but no more C80
derivatives will be developed. The C80 is described next. The primary TI processor family for parallel
processing is the C6x.

Unconventional DSP Processors

The members of this family include the TMS320C80, TMS320C62x, and TMS320C67x. The C80
contains four fixed-point DSPs plus a RISC on a single chip and is meant for video processing. The
reality is that the C80 is too expensive, consumes too much power, and development tools for it are
poor. TI is no longer developing new members of the C8x family, but third-party C8x boards and
tools are still being developed, e.g. the Genesis board by Matrox.

The C6x (C6000) family is a Very Long Instruction Word (VLIW) Reduced Instruction Set Computer
(RISC) Digital Signal Processor (DSP) with eight parallel function units: 6 are ALUs and 2 are
multipliers. The C6x has three key members: C6200 and C6400 for 16-bit fixed-point and C6700 for
32-bit floating-point processing. A 32-bit floating-point multiplication takes 4 cycles. The market
share for the C6x family hit $1.5 billion as of October 29, 1999.

When TI reports MIPS for the C6000, they are computing RISC MIPS using 8 times the clock rate.
These MIPS are *not* DSP processor MIPS. Another useful figure of merit is million multiply-
accumulates per second (MMACS), which is 2 x clock rate for the C6200 and C6400.

C62x Processor

The C62x has 8 arithmetic units (2 multipliers and 6 adders/shifters). Applications include wireless
basestations, modem pools, cable modems, remove access servers, digital subscriber loop modems,
and wireless PDAs. Members of the family include:

● TMS320C6211: 150 MHz (1200 RISC MIPS) for $25 (in 25K unit quantities); 64 kbits on-
chip memory (32 kbits data; 32 kbits program) plus L2 cache (512 kbits)

● TMS320C6201: 167 MHz (1333 RISC MIPS) and 200 MHz (1600 RISC MIPS); 1 Mbit on-
chip memory (512 kbits data; 512 kbits program); low-power version C6201B at 200 MHz
consumes 1.94 W of power

● TMS320C6202: 250 MHz (2000 RISC MIPS)
● TMS320C6203: 250 MHz (2000 RISC MIPS) and 300 MHz (2400 RISC MIPS); 7 Mbits on-

chip memory (3 Mb program; 4 Mb data); used in digital communication systems, including
basestations for third-generation wireless communication systems (wireless data networks) and
modem banks (a bank of 24 V.90 modems for a T-1 line on a single chip)

For more details, see http://www.ti.com/sc/c62xdsps.

http://www.matrox.com/imaging/products/genesis-dtk/genesis-dtk.htm
http://www.matrox.com/
http://www.ti.com/sc/docs/news/1999/billion.htm
http://www.ti.com/sc/docs/news/1999/billion.htm
http://www.ti.com/sc/docs/news/1999/99033a.htm
http://www.ti.com/sc/c62xdsps

C67x Processor

It is pin compatible with the 'C62x. The C67x is in volume production. At 100-MHz, the 'C6711
delivers 600 MFLOPS for only $20. A 150-MHz version of the device, also new, increases
performance to 900 MFLOPS. The 'C67x family offers a code-compatible roadmap to 3 GFLOPS and
beyond. Applications include beamforming base stations, 3-D virtual reality, graphics, speech
recognition, radar/sonar, precision instrumentation, and medical imaging.

Problems with TI Tools

● No code translators between C5x and C20x and between C54x and C6x exist
● No simulators and debuggers are publicly available, except for the C31.
● C compilers are very poor for the traditional fixed-point DSP processors (C2x/C5x/C54x), but

relatively poor for the C6000 processors, when compared to C compilers for desktop
computers.

Last updated 01/07/02. Send comments to bevans@ece.utexas.edu

mailto:bevans@ece.utexas.edu
mailto:bevans@ece.utexas.edu

RFC: 760
IEN: 128

 DOD STANDARD

 INTERNET PROTOCOL

 January 1980

 prepared for

 Defense Advanced Research Projects Agency
 Information Processing Techniques Office
 1400 Wilson Boulevard
 Arlington, Virginia 22209

 by

 Information Sciences Institute
 University of Southern California
 4676 Admiralty Way
 Marina del Rey, California 90291

January 1980
 Internet Protocol

 TABLE OF CONTENTS

 PREFACE .. iii

1. INTRODUCTION ... 1

 1.1 Motivation .. 1
 1.2 Scope ... 1
 1.3 Interfaces .. 1
 1.4 Operation ... 2

2. OVERVIEW ... 5

 2.1 Relation to Other Protocols 5
 2.2 Model of Operation .. 5
 2.3 Function Description .. 7

3. SPECIFICATION ... 11

 3.1 Internet Header Format 11
 3.2 Discussion ... 21
 3.3 Examples & Scenarios ... 30
 3.4 Interfaces ... 34

GLOSSARY .. 37

REFERENCES .. 41

 [Page i]

 January 1980
Internet Protocol

[Page ii]

January 1980
 Internet Protocol

 PREFACE

This document specifies the DoD Standard Internet Protocol. This
document is based on five earlier editions of the ARPA Internet Protocol
Specification, and the present text draws heavily from them. There have
been many contributors to this work both in terms of concepts and in
terms of text. This edition revises the details security,
compartmentation, and precedence features of the internet protocol.

 Jon Postel

 Editor

 [Page iii]

January 1980
RFC: 760
IEN: 128
Replaces: IENs 123, 111,
80, 54, 44, 41, 28, 26

 DOD STANDARD

 INTERNET PROTOCOL

 1. INTRODUCTION

1.1. Motivation

 The Internet Protocol is designed for use in interconnected systems of
 packet-switched computer communication networks. Such a system has
 been called a "catenet" [1]. The internet protocol provides for
 transmitting blocks of data called datagrams from sources to
 destinations, where sources and destinations are hosts identified by
 fixed length addresses. The internet protocol also provides for
 fragmentation and reassembly of long datagrams, if necessary, for
 transmission through "small packet" networks.

1.2. Scope

 The internet protocol is specifically limited in scope to provide the
 functions necessary to deliver a package of bits (an internet
 datagram) from a source to a destination over an interconnected system
 of networks. There are no mechanisms to promote data reliability,
 flow control, sequencing, or other services commonly found in
 host-to-host protocols.

1.3. Interfaces

 This protocol is called on by host-to-host protocols in an internet
 environment. This protocol calls on local network protocols to carry
 the internet datagram to the next gateway or destination host.

 For example, a TCP module would call on the internet module to take a
 TCP segment (including the TCP header and user data) as the data
 portion of an internet datagram. The TCP module would provide the
 addresses and other parameters in the internet header to the internet
 module as arguments of the call. The internet module would then
 create an internet datagram and call on the local network interface to
 transmit the internet datagram.

 In the ARPANET case, for example, the internet module would call on a
 local net module which would add the 1822 leader [2] to the internet
 datagram creating an ARPANET message to transmit to the IMP. The
 ARPANET address would be derived from the internet address by the
 local network interface and would be the address of some host in the
 ARPANET, that host might be a gateway to other networks.

 [Page 1]

 January 1980
Internet Protocol
Introduction

1.4. Operation

 The internet protocol implements two basic functions: addressing and
 fragmentation.

 The internet modules use the addresses carried in the internet header
 to transmit internet datagrams toward their destinations. The
 selection of a path for transmission is called routing.

 The internet modules use fields in the internet header to fragment and
 reassemble internet datagrams when necessary for transmission through
 "small packet" networks.

 The model of operation is that an internet module resides in each host
 engaged in internet communication and in each gateway that
 interconnects networks. These modules share common rules for
 interpreting address fields and for fragmenting and assembling
 internet datagrams. In addition, these modules (especially in
 gateways) may have procedures for making routing decisions and other
 functions.

 The internet protocol treats each internet datagram as an independent
 entity unrelated to any other internet datagram. There are no
 connections or logical circuits (virtual or otherwise).

 The internet protocol uses four key mechanisms in providing its
 service: Type of Service, Time to Live, Options, and Header Checksum.

 The Type of Service is used to indicate the quality of the service
 desired; this may be thought of as selecting among Interactive, Bulk,
 or Real Time, for example. The type of service is an abstract or
 generalized set of parameters which characterize the service choices
 provided in the networks that make up the internet. This type of
 service indication is to be used by gateways to select the actual
 transmission parameters for a particular network, the network to be
 used for the next hop, or the next gateway when routing an internet
 datagram.

 The Time to Live is an indication of the lifetime of an internet
 datagram. It is set by the sender of the datagram and reduced at the
 points along the route where it is processed. If the time to live
 reaches zero before the internet datagram reaches its destination, the
 internet datagram is destroyed. The time to live can be thought of as
 a self destruct time limit.

 The Options provide for control functions needed or useful in some
 situations but unnecessary for the most common communications. The

[Page 2]

January 1980
 Internet Protocol
 Introduction

 options include provisions for timestamps, error reports, and special
 routing.

 The Header Checksum provides a verification that the information used
 in processing internet datagram has been transmitted correctly. The
 data may contain errors. If the header checksum fails, the internet
 datagram is discarded at once by the entity which detects the error.

 The internet protocol does not provide a reliable communication
 facility. There are no acknowledgments either end-to-end or
 hop-by-hop. There is no error control for data, only a header
 checksum. There are no retransmissions. There is no flow control.

 [Page 3]

 January 1980
Internet Protocol

[Page 4]

January 1980
 Internet Protocol

 2. OVERVIEW

2.1. Relation to Other Protocols

 The following diagram illustrates the place of the internet protocol
 in the protocol hierarchy:

 +------+ +-----+ +-----+ +-----+
 |Telnet| | FTP | |Voice| ... | |
 +------+ +-----+ +-----+ +-----+
 | | | |
 +-----+ +-----+ +-----+
 | TCP | | RTP | ... | |
 +-----+ +-----+ +-----+
 | | |
 +-------------------------------+
 | Internet Protocol |
 +-------------------------------+
 |
 +---------------------------+
 | Local Network Protocol |
 +---------------------------+
 |

 Protocol Relationships

 Figure 1.

 Internet protocol interfaces on one side to the higher level
 host-to-host protocols and on the other side to the local network
 protocol.

2.2. Model of Operation

 The model of operation for transmitting a datagram from one
 application program to another is illustrated by the following
 scenario:

 We suppose that this transmission will involve one intermediate
 gateway.

 The sending application program prepares its data and calls on its
 local internet module to send that data as a datagram and passes the
 destination address and other parameters as arguments of the call.

 The internet module prepares a datagram header and attaches the data

 [Page 5]

 January 1980
Internet Protocol
Overview

 to it. The internet module determines a local network address for
 this internet address, in this case it is the address of a gateway.
 It sends this datagram and the local network address to the local
 network interface.

 The local network interface creates a local network header, and
 attaches the datagram to it, then sends the result via the local
 network.

 The datagram arrives at a gateway host wrapped in the local network
 header, the local network interface strips off this header, and
 turns the datagram over to the internet module. The internet module
 determines from the internet address that the datagram should be
 forwarded to another host in a second network. The internet module
 determines a local net address for the destination host. It calls
 on the local network interface for that network to send the
 datagram.

 This local network interface creates a local network header and
 attaches the datagram sending the result to the destination host.

 At this destination host the datagram is stripped of the local net
 header by the local network interface and handed to the internet
 module.

 The internet module determines that the datagram is for an
 application program in this host. It passes the data to the
 application program in response to a system call, passing the source
 address and other parameters as results of the call.

 Application Application
 Program Program
 \ /
 Internet Module Internet Module Internet Module
 \ / \ /
 LNI-1 LNI-1 LNI-2 LNI-2
 \ / \ /
 Local Network 1 Local Network 2

 Transmission Path

 Figure 2

[Page 6]

January 1980
 Internet Protocol
 Overview

2.3. Function Description

 The function or purpose of Internet Protocol is to move datagrams
 through an interconnected set of networks. This is done by passing
 the datagrams from one internet module to another until the
 destination is reached. The internet modules reside in hosts and
 gateways in the internet system. The datagrams are routed from one
 internet module to another through individual networks based on the
 interpretation of an internet address. Thus, one important mechanism
 of the internet protocol is the internet address.

 In the routing of messages from one internet module to another,
 datagrams may need to traverse a network whose maximum packet size is
 smaller than the size of the datagram. To overcome this difficulty, a
 fragmentation mechanism is provided in the internet protocol.

 Addressing

 A distinction is made between names, addresses, and routes [3]. A
 name indicates what we seek. An address indicates where it is. A
 route indicates how to get there. The internet protocol deals
 primarily with addresses. It is the task of higher level (i.e.,
 host-to-host or application) protocols to make the mapping from
 names to addresses. The internet module maps internet addresses to
 local net addresses. It is the task of lower level (i.e., local net
 or gateways) procedures to make the mapping from local net
 addresses to routes.

 Addresses are fixed length of four octets (32 bits). An address
 begins with a one octet network number, followed by a three octet
 local address. This three octet field is called the "rest" field.

 Care must be taken in mapping internet addresses to local net
 addresses; a single physical host must be able to act as if it were
 several distinct hosts to the extent of using several distinct
 internet addresses. A host should also be able to have several
 physical interfaces (multi-homing).

 That is, a host should be allowed several physical interfaces to the
 network with each having several logical internet addresses.

 Examples of address mappings may be found in reference [4].

 Fragmentation

 Fragmentation of an internet datagram may be necessary when it
 originates in a local net that allows a large packet size and must

 [Page 7]

 January 1980
Internet Protocol
Overview

 traverse a local net that limits packets to a smaller size to reach
 its destination.

 An internet datagram can be marked "don't fragment." Any internet
 datagram so marked is not to be internet fragmented under any
 circumstances. If internet datagram marked don't fragment cannot be
 delivered to its destination without fragmenting it, it is to be
 discarded instead.

 Fragmentation, transmission and reassembly across a local network
 which is invisible to the internet protocol module is called
 intranet fragmentation and may be used [5].

 The internet fragmentation and reassembly procedure needs to be able
 to break a datagram into an almost arbitrary number of pieces that
 can be later reassembled. The receiver of the fragments uses the
 identification field to ensure that fragments of different datagrams
 are not mixed. The fragment offset field tells the receiver the
 position of a fragment in the original datagram. The fragment
 offset and length determine the portion of the original datagram
 covered by this fragment. The more-fragments flag indicates (by
 being reset) the last fragment. These fields provide sufficient
 information to reassemble datagrams.

 The identification field is used to distinguish the fragments of one
 datagram from those of another. The originating protocol module of
 an internet datagram sets the identification field to a value that
 must be unique for that source-destination pair and protocol for the
 time the datagram will be active in the internet system. The
 originating protocol module of a complete datagram sets the
 more-fragments flag to zero and the fragment offset to zero.

 To fragment a long internet datagram, an internet protocol module
 (for example, in a gateway), creates two new internet datagrams and
 copies the contents of the internet header fields from the long
 datagram into both new internet headers. The data of the long
 datagram is divided into two portions on a 8 octet (64 bit) boundary
 (the second portion might not be an integral multiple of 8 octets,
 but the first must be). Call the number of 8 octet blocks in the
 first portion NFB (for Number of Fragment Blocks). The first
 portion of the data is placed in the first new internet datagram,
 and the total length field is set to the length of the first
 datagram. The more-fragments flag is set to one. The second
 portion of the data is placed in the second new internet datagram,
 and the total length field is set to the length of the second
 datagram. The more-fragments flag carries the same value as the
 long datagram. The fragment offset field of the second new internet

[Page 8]

January 1980
 Internet Protocol
 Overview

 datagram is set to the value of that field in the long datagram plus
 NFB.

 This procedure can be generalized for an n-way split, rather than
 the two-way split described.

 To assemble the fragments of an internet datagram, an internet
 protocol module (for example at a destination host) combines
 internet datagram that all have the same value for the four fields:
 identification, source, destination, and protocol. The combination
 is done by placing the data portion of each fragment in the relative
 position indicated by the fragment offset in that fragment's
 internet header. The first fragment will have the fragment offset
 zero, and the last fragment will have the more-fragments flag reset
 to zero.

 [Page 9]

 January 1980
Internet Protocol

[Page 10]

January 1980
 Internet Protocol

 3. SPECIFICATION

3.1. Internet Header Format

 A summary of the contents of the internet header follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | Header Checksum |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Options | Padding |
 +-+

 Example Internet Datagram Header

 Figure 3.

 Note that each tick mark represents one bit position.

 Version: 4 bits

 The Version field indicates the format of the internet header. This
 document describes version 4.

 IHL: 4 bits

 Internet Header Length is the length of the internet header in 32
 bit words, and thus points to the beginning of the data. Note that
 the minimum value for a correct header is 5.

 [Page 11]

 January 1980
Internet Protocol
Specification

 Type of Service: 8 bits

 The Type of Service provides an indication of the abstract
 parameters of the quality of service desired. These parameters are
 to be used to guide the selection of the actual service parameters
 when transmitting a datagram through a particular network. Several
 networks offer service precedence, which somehow treats high
 precedence traffic as more important than other traffic. A few
 networks offer a Stream service, whereby one can achieve a smoother
 service at some cost. Typically this involves the reservation of
 resources within the network. Another choice involves a low-delay
 vs. high-reliability trade off. Typically networks invoke more
 complex (and delay producing) mechanisms as the need for reliability
 increases.

 Bits 0-2: Precedence.
 Bit 3: Stream or Datagram.
 Bits 4-5: Reliability.
 Bit 6: Speed over Reliability.
 Bits 7: Speed.

 0 1 2 3 4 5 6 7
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | | | | | |
 | PRECEDENCE | STRM|RELIABILITY| S/R |SPEED|
 | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 PRECEDENCE STRM RELIABILITY S/R SPEED
 111-Flash Override 1-STREAM 11-highest 1-speed 1-high
 110-Flash 0-DTGRM 10-higher 0-rlblt 0-low
 11X-Immediate 01-lower
 01X-Priority 00-lowest
 00X-Routine

 The type of service is used to specify the treatment of the datagram
 during its transmission through the internet system. In the
 discussion (section 3.2) below, a chart shows the relationship of
 the internet type of service to the actual service provided on the
 ARPANET, the SATNET, and the PRNET.

 Total Length: 16 bits

 Total Length is the length of the datagram, measured in octets,
 including internet header and data. This field allows the length of
 a datagram to be up to 65,535 octets. Such long datagrams are
 impractical for most hosts and networks. All hosts must be prepared
 to accept datagrams of up to 576 octets (whether they arrive whole

[Page 12]

January 1980
 Internet Protocol
 Specification

 or in fragments). It is recommended that hosts only send datagrams
 larger than 576 octets if they have assurance that the destination
 is prepared to accept the larger datagrams.

 The number 576 is selected to allow a reasonable sized data block to
 be transmitted in addition to the required header information. For
 example, this size allows a data block of 512 octets plus 64 header
 octets to fit in a datagram. The maximal internet header is 60
 octets, and a typical internet header is 20 octets, allowing a
 margin for headers of higher level protocols.

 Identification: 16 bits

 An identifying value assigned by the sender to aid in assembling the
 fragments of a datagram.

 Flags: 3 bits

 Various Control Flags.

 Bit 0: reserved, must be zero
 Bit 1: Don't Fragment This Datagram (DF).
 Bit 2: More Fragments Flag (MF).

 0 1 2
 +---+---+---+
 | | D | M |
 | 0 | F | F |
 +---+---+---+

 Fragment Offset: 13 bits

 This field indicates where in the datagram this fragment belongs.
 The fragment offset is measured in units of 8 octets (64 bits). The
 first fragment has offset zero.

 Time to Live: 8 bits

 This field indicates the maximum time the datagram is allowed to
 remain the internet system. If this field contains the value zero,
 then the datagram should be destroyed. This field is modified in
 internet header processing. The time is measured in units of
 seconds. The intention is to cause undeliverable datagrams to be
 discarded.

 [Page 13]

 January 1980
Internet Protocol
Specification

 Protocol: 8 bits

 This field indicates the next level protocol used in the data
 portion of the internet datagram. The values for various protocols
 are specified in reference [6].

 Header Checksum: 16 bits

 A checksum on the header only. Since some header fields may change
 (e.g., time to live), this is recomputed and verified at each point
 that the internet header is processed.

 The checksum algorithm is:

 The checksum field is the 16 bit one's complement of the one's
 complement sum of all 16 bit words in the header. For purposes of
 computing the checksum, the value of the checksum field is zero.

 This is a simple to compute checksum and experimental evidence
 indicates it is adequate, but it is provisional and may be replaced
 by a CRC procedure, depending on further experience.

 Source Address: 32 bits

 The source address. The first octet is the Source Network, and the
 following three octets are the Source Local Address.

 Destination Address: 32 bits

 The destination address. The first octet is the Destination
 Network, and the following three octets are the Destination Local
 Address.

[Page 14]

January 1980
 Internet Protocol
 Specification

 Options: variable

 The option field is variable in length. There may be zero or more
 options. There are two cases for the format of an option:

 Case 1: A single octet of option-type.

 Case 2: An option-type octet, an option-length octet, and the
 actual option-data octets.

 The option-length octet counts the option-type octet and the
 option-length octet as well as the option-data octets.

 The option-type octet is viewed as having 3 fields:

 1 bit reserved, must be zero
 2 bits option class,
 5 bits option number.

 The option classes are:

 0 = control
 1 = internet error
 2 = experimental debugging and measurement
 3 = reserved for future use

 [Page 15]

 January 1980
Internet Protocol
Specification

 The following internet options are defined:

 CLASS NUMBER LENGTH DESCRIPTION
 ----- ------ ------ -----------
 0 0 - End of Option list. This option occupies only
 1 octet; it has no length octet.
 0 1 - No Operation. This option occupies only 1
 octet; it has no length octet.
 0 2 4 Security. Used to carry Security, and user
 group (TCC) information compatible with DOD
 requirements.
 0 3 var. Source Routing. Used to route the internet
 datagram based on information supplied by the
 source.
 0 7 var. Return Route. Used to record the route an
 internet datagram takes.
 0 8 4 Stream ID. Used to carry the stream
 identifier.
 1 1 var. General Error Report. Used to report errors
 in internet datagram processing.
 2 4 6 Internet Timestamp.
 2 5 6 Satellite Timestamp.

 Specific Option Definitions

 End of Option List

 +--------+
 |00000000|
 +--------+
 Type=0

 This option indicates the end of the option list. This might
 not coincide with the end of the internet header according to
 the internet header length. This is used at the end of all
 options, not the end of each option, and need only be used if
 the end of the options would not otherwise coincide with the end
 of the internet header.

 May be copied, introduced, or deleted on fragmentation.

[Page 16]

January 1980
 Internet Protocol
 Specification

 No Operation

 +--------+
 |00000001|
 +--------+
 Type=1

 This option may be used between options, for example, to align
 the beginning of a subsequent option on a 32 bit boundary.

 May be copied, introduced, or deleted on fragmentation.

 Security

 This option provides a way for DOD hosts to send security and
 TCC (closed user groups) parameters through networks whose
 transport leader does not contain fields for this information.
 The format for this option is as follows:

 +--------+--------+---------+--------+
 |00000010|00000100|000000SS | TCC |
 +--------+--------+---------+--------+
 Type=2 Length=4

 Security: 2 bits

 Specifies one of 4 levels of security

 11-top secret
 10-secret
 01-confidential
 00-unclassified

 Transmission Control Code: 8 bits

 Provides a means to compartmentalize traffic and define
 controlled communities of interest among subscribers.

 Note that this option does not require processing by the
 internet module but does require that this information be passed
 to higher level protocol modules. The security and TCC
 information might be used to supply class level and compartment
 information for transmitting datagrams into or through
 AUTODIN II.

 Must be copied on fragmentation.

 [Page 17]

 January 1980
Internet Protocol
Specification

 Source Route

 +--------+--------+--------+---------//--------+
 |00000011| length | source route |
 +--------+--------+--------+---------//--------+
 Type=3

 The source route option provides a means for the source of an
 internet datagram to supply routing information to be used by
 the gateways in forwarding the datagram to the destination.

 The option begins with the option type code. The second octet
 is the option length which includes the option type code and the
 length octet, as well as length-2 octets of source route data.

 A source route is composed of a series of internet addresses.
 Each internet address is 32 bits or 4 octets. The length
 defaults to two, which indicates the source route is empty and
 the remaining routing is to be based on the destination address
 field.

 If the address in destination address field has been reached and
 this option's length is not two, the next address in the source
 route replaces the address in the destination address field, and
 is deleted from the source route and this option's length is
 reduced by four. (The Internet Header Length Field must be
 changed also.)

 Must be copied on fragmentation.

 Return Route

 +--------+--------+--------+---------//--------+
 |00000111| length | return route |
 +--------+--------+--------+---------//--------+
 Type=7

 The return route option provides a means to record the route of
 an internet datagram.

 The option begins with the option type code. The second octet
 is the option length which includes the option type code and the
 length octet, as well as length-2 octets of return route data.

 A return route is composed of a series of internet addresses.
 The length defaults to two, which indicates the return route is
 empty.

[Page 18]

January 1980
 Internet Protocol
 Specification

 When an internet module routes a datagram it checks to see if
 the return route option is present. If it is, it inserts its
 own internet address as known in the environment into which this
 datagram is being forwarded into the return route at the front
 of the address string and increments the length by four.

 Not copied on fragmentation, goes in first fragment only.

 Stream Identifier

 +--------+--------+---------+--------+
 |00001000|00000010| Stream ID |
 +--------+--------+---------+--------+
 Type=8 Length=4

 This option provides a way for the 16-bit SATNET stream
 identifier to be carried through networks that do not support
 the stream concept.

 Must be copied on fragmentation.

 General Error Report

 +--------+--------+--------+--------+--------+----//----+
 |00100001| length |err code| id | |
 +--------+--------+--------+--------+--------+----//----+
 Type=33

 The general error report is used to report an error detected in
 processing an internet datagram to the source internet module of
 that datagram. The "err code" indicates the type of error
 detected, and the "id" is copied from the identification field
 of the datagram in error, additional octets of error information
 may be present depending on the err code.

 If an internet datagram containing the general error report
 option is found to be in error or must be discarded, no error
 report is sent.

 ERR CODE:

 0 - Undetermined Error, used when no information is available
 about the type of error or the error does not fit any defined
 class. Following the id should be as much of the datagram
 (starting with the internet header) as fits in the option
 space.

 1 - Datagram Discarded, used when specific information is

 [Page 19]

 January 1980
Internet Protocol
Specification

 available about the reason for discarding the datagram can be
 reported. Following the id should be the original (4-octets)
 destination address, and the (1-octet) reason.

 Reason Description
 ------ -----------
 0 No Reason
 1 No One Wants It - No higher level protocol or
 application program at destination wants this
 datagram.
 2 Fragmentation Needed & DF - Cannot deliver with out
 fragmenting and has don't fragment bit set.
 3 Reassembly Problem - Destination could not
 reassemble due to missing fragments when time to
 live expired.
 4 Gateway Congestion - Gateway discarded datagram due
 to congestion.

 The error report is placed in a datagram with the following
 values in the internet header fields:

 Version: Same as the datagram in error.
 IHL: As computed.
 Type of Service: Zero.
 Total Length: As computed.
 Identification: A new identification is selected.
 Flags: Zero.
 Fragment Offset: Zero.
 Time to Live: Sixty.
 Protocol: Same as the datagram in error.
 Header Checksum: As computed.
 Source Address: Address of the error reporting module.
 Destination Address: Source address of the datagram in error.
 Options: The General Error Report Option.
 Padding: As needed.

 Not copied on fragmentation, goes with first fragment.

 Internet Timestamp

 +--------+--------+--------+--------+--------+--------+
 |01000100|00000100| time in milliseconds |
 +--------+--------+--------+--------+--------+--------+
 Type=68 Length=6

 The data of the timestamp is a 32 bit time measured in
 milliseconds.

[Page 20]

January 1980
 Internet Protocol
 Specification

 Not copied on fragmentation, goes with first fragment

 Satellite Timestamp

 +--------+--------+--------+--------+--------+--------+
 |01000101|00000100| time in milliseconds |
 +--------+--------+--------+--------+--------+--------+
 Type=69 Length=6

 The data of the timestamp is a 32 bit time measured in
 milliseconds.

 Not copied on fragmentation, goes with first fragment

 Padding: variable

 The internet header padding is used to ensure that the internet
 header ends on a 32 bit boundary. The padding is zero.

3.2. Discussion

 The implementation of a protocol must be robust. Each implementation
 must expect to interoperate with others created by different
 individuals. While the goal of this specification is to be explicit
 about the protocol there is the possibility of differing
 interpretations. In general, an implementation should be conservative
 in its sending behavior, and liberal in its receiving behavior. That
 is, it should be careful to send well-formed datagrams, but should
 accept any datagram that it can interpret (e.g., not object to
 technical errors where the meaning is still clear).

 The basic internet service is datagram oriented and provides for the
 fragmentation of datagrams at gateways, with reassembly taking place
 at the destination internet protocol module in the destination host.
 Of course, fragmentation and reassembly of datagrams within a network
 or by private agreement between the gateways of a network is also
 allowed since this is transparent to the internet protocols and the
 higher-level protocols. This transparent type of fragmentation and
 reassembly is termed "network-dependent" (or intranet) fragmentation
 and is not discussed further here.

 Internet addresses distinguish sources and destinations to the host
 level and provide a protocol field as well. It is assumed that each
 protocol will provide for whatever multiplexing is necessary within a
 host.

 [Page 21]

 January 1980
Internet Protocol
Specification

 Addressing

 The 8 bit network number, which is the first octet of the address,
 has a value as specified in reference [6].

 The 24 bit local address, assigned by the local network, should
 allow for a single physical host to act as several distinct internet
 hosts. That is, there should be mapping between internet host
 addresses and network/host interfaces that allows several internet
 addresses to correspond to one interface. It should also be allowed
 for a host to have several physical interfaces and to treat the
 datagrams from several of them as if they were all addressed to a
 single host. Address mappings between internet addresses and
 addresses for ARPANET, SATNET, PRNET, and other networks are
 described in reference [4].

 Fragmentation and Reassembly.

 The internet identification field (ID) is used together with the
 source and destination address, and the protocol fields, to identify
 datagram fragments for reassembly.

 The More Fragments flag bit (MF) is set if the datagram is not the
 last fragment. The Fragment Offset field identifies the fragment
 location, relative to the beginning of the original unfragmented
 datagram. Fragments are counted in units of 8 octets. The
 fragmentation strategy is designed so than an unfragmented datagram
 has all zero fragmentation information (MF = 0, fragment offset =
 0). If an internet datagram is fragmented, its data portion must be
 broken on 8 octet boundaries.

 This format allows 2**13 = 8192 fragments of 8 octets each for a
 total of 65,536 octets. Note that this is consistent with the the
 datagram total length field.

 When fragmentation occurs, some options are copied, but others
 remain with the first fragment only.

 Every internet module must be able to forward a datagram of 68
 octets without further fragmentation. This is because an internet
 header may be up to 60 octets, and the minimum fragment is 8 octets.

 Every internet destination must be able to receive a datagram of 576
 octets either in one piece or in fragments to be reassembled.

[Page 22]

January 1980
 Internet Protocol
 Specification

 The fields which may be affected by fragmentation include:

 (1) options field
 (2) more fragments flag
 (3) fragment offset
 (4) internet header length field
 (5) total length field
 (6) header checksum

 If the Don't Fragment flag (DF) bit is set, then internet
 fragmentation of this datagram is NOT permitted, although it may be
 discarded. This can be used to prohibit fragmentation in cases
 where the receiving host does not have sufficient resources to
 reassemble internet fragments.

 General notation in the following pseudo programs: "=<" means "less
 than or equal", "#" means "not equal", "=" means "equal", "<-" means
 "is set to". Also, "x to y" includes x and excludes y; for example,
 "4 to 7" would include 4, 5, and 6 (but not 7).

 Fragmentation Procedure

 The maximum sized datagram that can be transmitted through the
 next network is called the maximum transmission unit (MTU).

 If the total length is less than or equal the maximum transmission
 unit then submit this datagram to the next step in datagram
 processing; otherwise cut the datagram into two fragments, the
 first fragment being the maximum size, and the second fragment
 being the rest of the datagram. The first fragment is submitted
 to the next step in datagram processing, while the second fragment
 is submitted to this procedure in case it still too large.

 Notation:

 FO - Fragment Offset
 IHL - Internet Header Length
 MF - More Fragments flag
 TL - Total Length
 OFO - Old Fragment Offset
 OIHL - Old Internet Header Length
 OMF - Old More Fragments flag
 OTL - Old Total Length
 NFB - Number of Fragment Blocks
 MTU - Maximum Transmission Unit

 [Page 23]

 January 1980
Internet Protocol
Specification

 Procedure:

 IF TL =< MTU THEN Submit this datagram to the next step
 in datagram processing ELSE
 To produce the first fragment:
 (1) Copy the original internet header;
 (2) OIHL <- IHL; OTL <- TL; OFO <- FO; OMF <- MF;
 (3) NFB <- (MTU-IHL*4)/8;
 (4) Attach the first NFB*8 data octets;
 (5) Correct the header:
 MF <- 1; TL <- (IHL*4)+(NFB*8);
 Recompute Checksum;
 (6) Submit this fragment to the next step in
 datagram processing;
 To produce the second fragment:
 (7) Selectively copy the internet header (some options
 are not copied, see option definitions);
 (8) Append the remaining data;
 (9) Correct the header:
 IHL <- (((OIHL*4)-(length of options not copied))+3)/4;
 TL <- OTL - NFB*8 - (OIHL-IHL)*4);
 FO <- OFO + NFB; MF <- OMF; Recompute Checksum;
 (10) Submit this fragment to the fragmentation test; DONE.

 Reassembly Procedure

 For each datagram the buffer identifier is computed as the
 concatenation of the source, destination, protocol, and
 identification fields. If this is a whole datagram (that is both
 the fragment offset and the more fragments fields are zero), then
 any reassembly resources associated with this buffer identifier
 are released and the datagram is forwarded to the next step in
 datagram processing.

 If no other fragment with this buffer identifier is on hand then
 reassembly resources are allocated. The reassembly resources
 consist of a data buffer, a header buffer, a fragment block bit
 table, a total data length field, and a timer. The data from the
 fragment is placed in the data buffer according to its fragment
 offset and length, and bits are set in the fragment block bit
 table corresponding to the fragment blocks received.

 If this is the first fragment (that is the fragment offset is
 zero) this header is placed in the header buffer. If this is the
 last fragment (that is the more fragments field is zero) the
 total data length is computed. If this fragment completes the
 datagram (tested by checking the bits set in the fragment block
 table), then the datagram is sent to the next step in datagram

[Page 24]

January 1980
 Internet Protocol
 Specification

 processing; otherwise the timer is set to the maximum of the
 current timer value and the value of the time to live field from
 this fragment; and the reassembly routine gives up control.

 If the timer runs out, the all reassembly resources for this
 buffer identifier are released. The initial setting of the timer
 is a lower bound on the reassembly waiting time. This is because
 the waiting time will be increased if the Time to Live in the
 arriving fragment is greater than the current timer value but will
 not be decreased if it is less. The maximum this timer value
 could reach is the maximum time to live (approximately 4.25
 minutes). The current recommendation for the initial timer
 setting is 15 seconds. This may be changed as experience with
 this protocol accumulates. Note that the choice of this parameter
 value is related to the buffer capacity available and the data
 rate of the transmission medium; that is, data rate times timer
 value equals buffer size (e.g., 10Kb/s X 15s = 150Kb).

 Notation:

 FO - Fragment Offset
 IHL - Internet Header Length
 MF - More Fragments flag
 TTL - Time To Live
 NFB - Number of Fragment Blocks
 TL - Total Length
 TDL - Total Data Length
 BUFID - Buffer Identifier
 RCVBT - Fragment Received Bit Table
 TLB - Timer Lower Bound

 [Page 25]

 January 1980
Internet Protocol
Specification

 Procedure:

 (1) BUFID <- source|destination|protocol|identification;
 (2) IF FO = 0 AND MF = 0
 (3) THEN IF buffer with BUFID is allocated
 (4) THEN flush all reassembly for this BUFID;
 (5) Submit datagram to next step; DONE.
 (6) ELSE IF no buffer with BUFID is allocated
 (7) THEN allocate reassembly resources
 with BUFID;
 TIMER <- TLB; TDL <- 0;
 (8) put data from fragment into data buffer with
 BUFID from octet FO*8 to
 octet (TL-(IHL*4))+FO*8;
 (9) set RCVBT bits from FO
 to FO+((TL-(IHL*4)+7)/8);
 (10) IF MF = 0 THEN TDL <- TL-(IHL*4)+(FO*8)
 (11) IF FO = 0 THEN put header in header buffer
 (12) IF TDL # 0
 (13) AND all RCVBT bits from 0
 to (TDL+7)/8 are set
 (14) THEN TL <- TDL+(IHL*4)
 (15) Submit datagram to next step;
 (16) free all reassembly resources
 for this BUFID; DONE.
 (17) TIMER <- MAX(TIMER,TTL);
 (18) give up until next fragment or timer expires;
 (19) timer expires: flush all reassembly with this BUFID; DONE.

 In the case that two or more fragments contain the same data
 either identically or through a partial overlap, this procedure
 will use the more recently arrived copy in the data buffer and
 datagram delivered.

 Identification

 The choice of the Identifier for a datagram is based on the need to
 provide a way to uniquely identify the fragments of a particular
 datagram. The protocol module assembling fragments judges fragments
 to belong to the same datagram if they have the same source,
 destination, protocol, and Identifier. Thus, the sender must choose
 the Identifier to be unique for this source, destination pair and
 protocol for the time the datagram (or any fragment of it) could be
 alive in the internet.

 It seems then that a sending protocol module needs to keep a table
 of Identifiers, one entry for each destination it has communicated
 with in the last maximum packet lifetime for the internet.

[Page 26]

January 1980
 Internet Protocol
 Specification

 However, since the Identifier field allows 65,536 different values,
 some host may be able to simply use unique identifiers independent
 of destination.

 It is appropriate for some higher level protocols to choose the
 identifier. For example, TCP protocol modules may retransmit an
 identical TCP segment, and the probability for correct reception
 would be enhanced if the retransmission carried the same identifier
 as the original transmission since fragments of either datagram
 could be used to construct a correct TCP segment.

 Type of Service

 The type of service (TOS) is for internet service quality selection.
 The type of service is specified along the abstract parameters
 precedence, reliability, and speed. A further concern is the
 possibility of efficient handling of streams of datagrams. These
 abstract parameters are to be mapped into the actual service
 parameters of the particular networks the datagram traverses.

 Precedence. An independent measure of the importance of this
 datagram.

 Stream or Datagram. Indicates if there will be other datagrams from
 this source to this destination at regular frequent intervals
 justifying the maintenance of stream processing information.

 Reliability. A measure of the level of effort desired to ensure
 delivery of this datagram.

 Speed over Reliability. Indicates the relative importance of speed
 and reliability when a conflict arises in meeting the pair of
 requests.

 Speed. A measure of the importance of prompt delivery of this
 datagram.

 For example, the ARPANET has a priority bit, and a choice between
 "standard" messages (type 0) and "uncontrolled" messages (type 3),
 (the choice between single packet and multipacket messages can also
 be considered a service parameter). The uncontrolled messages tend
 to be less reliably delivered and suffer less delay. Suppose an
 internet datagram is to be sent through the ARPANET. Let the
 internet type of service be given as:

 [Page 27]

 January 1980
Internet Protocol
Specification

 Precedence: 5
 Stream: 0
 Reliability: 1
 S/R: 1
 Speed: 1

 The mapping of these parameters to those available for the ARPANET
 would be to set the ARPANET priority bit on since the Internet
 priority is in the upper half of its range, to select uncontrolled
 messages since the speed and reliability requirements are equal and
 speed is preferred.

 The following chart presents the recommended mappings from the
 internet protocol type of service into the service parameters
 actually available on the ARPANET, the PRNET, and the SATNET:

 +------------+----------+----------+----------+----------+
 |Application | INTERNET | ARPANET | PRNET | SATNET |
 +------------+----------+----------+----------+----------+
 |TELNET |S/D:stream| T: 3 | R: ptp | T: block |
 | on | R:normal| S: S | A: no | D: min |
 | TCP |S/R:speed | | | H: inf |
 | | S:fast | | | R: no |
 +------------+----------+----------+----------+----------+
 |FTP |S/D:stream| T: 0 | R: ptp | T: block |
 | on | R:normal| S: M | A: no | D: normal|
 | TCP |S/R:rlblt | | | H: inf |
 | | S:normal| | | R: no |
 +------------+----------+----------+----------+----------+
 |interactive |S/D:strm* | T: 3 | R: ptp | T: stream|
 |narrow band | R:least | S: S | A: no | D: min |
 | speech | P:speed | | | H: short |
 | | S:asap | | | R: no |
 +------------+----------+----------+----------+----------+
 |datagram |S/D:dtgrm | T: 3 or 0| R:station| T: block |
 | | R:normal| S: S or M| A: no | D: min |
 | |S/R:speed | | | H: short |
 | | S:fast | | | R: no |
 +------------+----------+----------+----------+----------+
 key: S/D=strm/dtgrm T=type R=route T=type
 R=reliability S=size A=ack D=delay
 S/R=speed/rlblt H=holding time
 S=speed R=reliability
 *=requires stream set up

[Page 28]

January 1980
 Internet Protocol
 Specification

 Time to Live

 The time to live is set by the sender to the maximum time the
 datagram is allowed to be in the internet system. If the datagram
 is in the internet system longer than the time to live, then the
 datagram should be destroyed. This field should be decreased at
 each point that the internet header is processed to reflect the time
 spent processing the datagram. Even if no local information is
 available on the time actually spent, the field should be
 decremented by 1. The time is measured in units of seconds (i.e.
 the value 1 means one second). Thus, the maximum time to live is
 255 seconds or 4.25 minutes.

 Options

 The options are just that, optional. That is, the presence or
 absence of an option is the choice of the sender, but each internet
 module must be able to parse every option. There can be several
 options present in the option field.

 The options might not end on a 32-bit boundary. The internet header
 should be filled out with octets of zeros. The first of these would
 be interpreted as the end-of-options option, and the remainder as
 internet header padding.

 Every internet module must be able to act on the following options:
 End of Option List (0), No Operation (1), Source Route (3), Return
 Route (7), General Error Report (33), and Internet Timestamp (68).
 The Security Option (2) is required only if classified or
 compartmented traffic is to be passed.

 Checksum

 The internet header checksum is recomputed if the internet header is
 changed. For example, a reduction of the time to live, additions or
 changes to internet options, or due to fragmentation. This checksum
 at the internet level is intended to protect the internet header
 fields from transmission errors.

 [Page 29]

 January 1980
Internet Protocol
Specification

3.3. Examples & Scenarios

 Example 1:

 This is an example of the minimal data carrying internet datagram:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver= 4 |IHL= 5 |Type of Service| Total Length = 21 |
 +-+
 | Identification = 111 |Flg=0| Fragment Offset = 0 |
 +-+
 | Time = 123 | Protocol = 1 | header checksum |
 +-+
 | source address |
 +-+
 | destination address |
 +-+
 | data |
 +-+-+-+-+-+-+-+-+

 Example Internet Datagram

 Figure 4.

 Note that each tick mark represents one bit position.

 This is a internet datagram in version 4 of internet protocol; the
 internet header consists of five 32 bit words, and the total length
 of the datagram is 21 octets. This datagram is a complete datagram
 (not a fragment).

[Page 30]

January 1980
 Internet Protocol
 Specification

 Example 2:

 In this example, we show first a moderate size internet datagram
 (552 data octets), then two internet fragments that might result
 from the fragmentation of this datagram if the maximum sized
 transmission allowed were 280 octets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver= 4 |IHL= 5 |Type of Service| Total Length = 472 |
 +-+
 | Identification = 111 |Flg=0| Fragment Offset = 0 |
 +-+
 | Time = 123 | Protocol = 6 | header checksum |
 +-+
 | source address |
 +-+
 | destination address |
 +-+
 | data |
 +-+
 | data |
 \ \
 \ \
 | data |
 +-+
 | data |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Example Internet Datagram

 Figure 5.

 [Page 31]

 January 1980
Internet Protocol
Specification

 Now the first fragment that results from splitting the datagram
 after 256 data octets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver= 4 |IHL= 5 |Type of Service| Total Length = 276 |
 +-+
 | Identification = 111 |Flg=1| Fragment Offset = 0 |
 +-+
 | Time = 119 | Protocol = 6 | Header Checksum |
 +-+
 | source address |
 +-+
 | destination address |
 +-+
 | data |
 +-+
 | data |
 \ \
 \ \
 | data |
 +-+
 | data |
 +-+

 Example Internet Fragment

 Figure 6.

[Page 32]

January 1980
 Internet Protocol
 Specification

 And the second fragment.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver= 4 |IHL= 5 |Type of Service| Total Length = 216 |
 +-+
 | Identification = 111 |Flg=0| Fragment Offset = 32 |
 +-+
 | Time = 119 | Protocol = 6 | Header Checksum |
 +-+
 | source address |
 +-+
 | destination address |
 +-+
 | data |
 +-+
 | data |
 \ \
 \ \
 | data |
 +-+
 | data |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Example Internet Fragment

 Figure 7.

 [Page 33]

 January 1980
Internet Protocol
Specification

 Example 3:

 Here, we show an example of a datagram containing options:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver= 4 |IHL= 8 |Type of Service| Total Length = 576 |
 +-+
 | Identification = 111 |Flg=0| Fragment Offset = 0 |
 +-+
 | Time = 123 | Protocol = 6 | Header Checksum |
 +-+
 | source address |
 +-+
 | destination address |
 +-+
 | Opt. Code = x | Opt. Len.= 3 | option value | Opt. Code = x |
 +-+
 | Opt. Len. = 4 | option value | Opt. Code = 1 |
 +-+
 | Opt. Code = y | Opt. Len. = 3 | option value | Opt. Code = 0 |
 +-+
 | data |
 \ \
 \ \
 | data |
 +-+
 | data |
 +-+

 Example Internet Datagram

 Figure 8.

3.4. Interfaces

 Internet protocol interfaces on one side to the local network and on
 the other side to either a higher level protocol or an application
 program. In the following, the higher level protocol or application
 program (or even a gateway program) will be called the "user" since it
 is using the internet module. Since internet protocol is a datagram
 protocol, there is minimal memory or state maintained between datagram
 transmissions, and each call on the internet protocol module by the
 user supplies all the necessary information.

[Page 34]

January 1980
 Internet Protocol
 Specification

 For example, the following two calls satisfy the requirements for the
 user to internet protocol module communication ("=>" means returns):

 SEND (dest, TOS, TTL, BufPTR, len, Id, DF, options => result)

 where:

 dest = destination address
 TOS = type of service
 TTL = time to live
 BufPTR = buffer pointer
 len = length of buffer
 Id = Identifier
 DF = Don't Fragment
 options = option data
 result = response
 OK = datagram sent ok
 Error = error in arguments or local network error

 RECV (BufPTR => result, source, dest, prot, TOS, len)

 where:

 BufPTR = buffer pointer
 result = response
 OK = datagram received ok
 Error = error in arguments
 source = source address
 dest = destination address
 prot = protocol
 TOS = type of service
 len = length of buffer

 When the user sends a datagram, it executes the SEND call supplying
 all the arguments. The internet protocol module, on receiving this
 call, checks the arguments and prepares and sends the message. If the
 arguments are good and the datagram is accepted by the local network,
 the call returns successfully. If either the arguments are bad, or
 the datagram is not accepted by the local network, the call returns
 unsuccessfully. On unsuccessful returns, a reasonable report should
 be made as to the cause of the problem, but the details of such
 reports are up to individual implementations.

 When a datagram arrives at the internet protocol module from the local
 network, either there is a pending RECV call from the user addressed
 or there is not. In the first case, the pending call is satisfied by
 passing the information from the datagram to the user. In the second
 case, the user addressed is notified of a pending datagram. If the

 [Page 35]

 January 1980
Internet Protocol
Specification

 user addressed does not exist, an error datagram is returned to the
 sender, and the data is discarded.

 The notification of a user may be via a pseudo interrupt or similar
 mechanism, as appropriate in the particular operating system
 environment of the implementation.

 A user's RECV call may then either be immediately satisfied by a
 pending datagram, or the call may be pending until a datagram arrives.

 An implementation may also allow or require a call to the internet
 module to indicate interest in or reserve exclusive use of a class of
 datagrams (e.g., all those with a certain value in the protocol
 field).

[Page 36]

January 1980
 Internet Protocol

 GLOSSARY

1822
 BBN Report 1822, "The Specification of the Interconnection of
 a Host and an IMP". The specification of interface between a
 host and the ARPANET.

ARPANET message
 The unit of transmission between a host and an IMP in the
 ARPANET. The maximum size is about 1012 octets (8096 bits).

ARPANET packet
 A unit of transmission used internally in the ARPANET between
 IMPs. The maximum size is about 126 octets (1008 bits).

Destination
 The destination address, an internet header field.

DF
 The Don't Fragment bit carried in the flags field.

Flags
 An internet header field carrying various control flags.

Fragment Offset
 This internet header field indicates where in the internet
 datagram a fragment belongs.

header
 Control information at the beginning of a message, segment,
 datagram, packet or block of data.

Identification
 An internet header field carrying the identifying value
 assigned by the sender to aid in assembling the fragments of a
 datagram.

IHL
 The internet header field Internet Header Length is the length
 of the internet header measured in 32 bit words.

IMP
 The Interface Message Processor, the packet switch of the
 ARPANET.

 [Page 37]

 January 1980
Internet Protocol
Glossary

Internet Address
 A four octet (32 bit) source or destination address consisting
 of a Network field and a Local Address field.

internet fragment
 A portion of the data of an internet datagram with an internet
 header.

internet datagram
 The unit of data exchanged between a pair of internet modules
 (includes the internet header).

ARPANET leader
 The control information on an ARPANET message at the host-IMP
 interface.

Local Address
 The address of a host within a network. The actual mapping of
 an internet local address on to the host addresses in a
 network is quite general, allowing for many to one mappings.

MF
 The More-Fragments Flag carried in the internet header flags
 field.

module
 An implementation, usually in software, of a protocol or other
 procedure.

more-fragments flag
 A flag indicating whether or not this internet datagram
 contains the end of an internet datagram, carried in the
 internet header Flags field.

NFB
 The Number of Fragment Blocks in a the data portion of an
 internet fragment. That is, the length of a portion of data
 measured in 8 octet units.

octet
 An eight bit byte.

Options
 The internet header Options field may contain several options,
 and each option may be several octets in length. The options
 are used primarily in testing situations, for example to carry
 timestamps.

[Page 38]

January 1980
 Internet Protocol
 Glossary

Padding
 The internet header Padding field is used to ensure that the
 data begins on 32 bit word boundary. The padding is zero.

Protocol
 In this document, the next higher level protocol identifier,
 an internet header field.

Rest
 The 3 octet (24 bit) local address portion of an Internet
 Address.

RTP
 Real Time Protocol: A host-to-host protocol for communication
 of time critical information.

Source
 The source address, an internet header field.

TCP
 Transmission Control Protocol: A host-to-host protocol for
 reliable communication in internet environments.

TCP Segment
 The unit of data exchanged between TCP modules (including the
 TCP header).

Total Length
 The internet header field Total Length is the length of the
 datagram in octets including internet header and data.

Type of Service
 An internet header field which indicates the type (or quality)
 of service for this internet datagram.

User
 The user of the internet protocol. This may be a higher level
 protocol module, an application program, or a gateway program.

Version
 The Version field indicates the format of the internet header.

 [Page 39]

 January 1980
Internet Protocol

[Page 40]

January 1980
 Internet Protocol

 REFERENCES

[1] Cerf, V., "The Catenet Model for Internetworking," Information
 Processing Techniques Office, Defense Advanced Research Projects
 Agency, IEN 48, July 1978.

[2] Bolt Beranek and Newman, "Specification for the Interconnection of
 a Host and an IMP," BBN Technical Report 1822, May 1978 (Revised).

[3] Shoch, J., "Inter-Network Naming, Addressing, and Routing,"
 COMPCON, IEEE Computer Society, Fall 1978.

[4] Postel, J., "Address Mappings," IEN 115, USC/Information Sciences
 Institute, August 1979.

[5] Shoch, J., "Packet Fragmentation in Inter-Network Protocols,"
 Computer Networks, v. 3, n. 1, February 1979.

[6] Postel, J., "Assigned Numbers," RFC 762, IEN 127, USC/Information
 Sciences Institute, January 1980.

 [Page 41]

 January 1980
Internet Protocol

[Page 42]

James Bond Meets The 7 Layer OSI Model

The modular networking architecture of Windows 95 is based on two industry standard models for a
layered networking architecture, namely the International Organization for Standardization (ISO)
model for computer networking, called the Open Systems Interconnect (OSI) Reference Model, and
the Institute of Electrical and Electronic Engineers (IEEE) 802 model. Windows NT and Windows for
Workgroups are also designed according to these standard models. The ISO OSI and IEEE 802 models
define a modular approach to networking, with each layer responsible for some discrete aspect of the
networking process.

The OSI model describes the flow of data in a network, from the lowest layer (the physical
connections) up to the layer containing the user’s applications. Data going to and from the network is
passed layer to layer. Each layer is able to communicate with the layer immediately above it and the
layer immediately below it. This way, each layer is written as an efficient, streamlined software
component. When a layer receives a packet of information, it checks the destination address, and if its
own address is not there, it passes the packet to the next layer.

When two computers communicate on a network, the software at each layer on one computer assumes
it is communicating with the same layer on the other computer. For example, the Transport layer of
one computer communicates with the Transport layer on the other computer. The Transport layer on
the first computer has no regard for how the communication actually passes through the lower layers
of the first computer, across the physical media, and then up through the lower layers of the second
computer.

The OSI Reference Model includes seven layers:

 Application

 Presentation

 Session

 Transport

 Network

 Data-Link

 Physical

James Bond meets Number One on the 7th floor of the spy headquarters building.
Number One gives Bond a secret message that must get through to the US Embassy
across town. Bond proceeds to the 6th floor where the message is translated into an
intermediary language, encrypted and miniaturized. Bond takes the elevator to the 5th

floor where Security checks the message to be sure it is all there and puts some
checkpoints in the message so his counterpart at the US end can be sure he’s got the
whole message. On the 4th floor the message is analyzed to see if it can be combined
with some other small messages that need to go to the US end. Also if the message was
very large it might be broken into several small packages so other spies can take it and
have it reassembled on the other end. The 3rd floor personnel check the address on the
message and determine who the addressee is and advising Bond of the fastest route to
the Embassy. On the 2nd floor the message is put into a special courier pouch(packet). It
contains the message, the sender and destination ID. It also warns the recipient if other
pieces are still coming. Bond proceeds to the 1st floor where Q has prepared the Aston
Martin for the trip to the Embassy. Bond departs for the US Embassy with the secret
packet in hand. On the other end the process is reversed. Bond proceeds from floor to
floor where the message is decoded. The US Ambassador is very grateful the message
got through safely. "Bond, please tell Number One I’ll be glad to meet him for dinner
tonight".

• The Application layer represents the level at which applications access network
services. This layer represents the services that directly support applications such as
software for file transfers, database access, and electronic mail.

• The Presentation layer translates data from the Application layer into an
intermediary format. This layer also manages security issues by providing services
such as data encryption, and compresses data so that fewer bits need to be transferred
on the network.

• The Session layer allows two applications on different computers to establish, use,
and end a session. This layer establishes dialog control between the two computers in
a session, regulating which side transmits, plus when and how long it transmits.

• The Transport layer handles error recognition and recovery. It also repackages long
messages when necessary into small packets for transmission and, at the receiving
end, rebuilds packets into the original message. The receiving Transport layer also
sends receipt acknowledgments.

• The Network layer addresses messages and translates logical addresses and names
into physical addresses. It also determines the route from the source to the destination
computer and manages traffic problems, such as switching, routing, and controlling
the congestion of data packets.

• The Data Link layer packages raw bits from the Physical layer into frames (logical,
structured packets for data). This layer is responsible for transferring frames from one
computer to another, without errors. After sending a frame, it waits for an
acknowledgment from the receiving computer.

• The Physical layer transmits bits from one computer to another and regulates the

transmission of a stream of bits over a physical medium. This layer defines how the
cable is attached to the network adapter and what transmission technique is used to
send data over the cable.

Date last updated: 05/06/97

Protocol Stacks in Relationship to the OSI Model

OSI
Layer

Apple
Computer

Banyan
Systems

DEC
DECnet

IBM
SNA

Microsoft
Networking

Novell
NetWare

TCP/IP
Internet

Xerox
XNS

OSI
Protocols

Application
Layer 7

Application Programs and Protocols
for file transfer, electronic mail, etc.

Presentation
Layer 6

AppleTalk
Filing

Protocol
(AFP) Remote

Procedural
Calls

(Net RPC)

Network
Management

Network
Application

Transaction
Services

Presentation
Services

Server
Message

Block
(SMB)

NetWare
Core

Protocols
(NCP

(Telnet, FTP,
SMTP, etc.)

Control and
Process

Interaction

ISO
8823

Session
Layer 5

AppleTalk
Session
Protocol
(ASP)

Session
Data
Flow

Control

Network
Basic

Input/Output
System

(NetBIOS)

Network
Basic

Input/Output
System

(NetBIOS)

ISO
8327

Transport
Layer 4

AppleTalk
Transaction

Protocol
(ATP)

VINES
InterProcess

Communications
(VIPC)

End
Communications

Transmission
Control

Network
Basic

Extended
User

Interface
(NetBEUI)

Sequenced
Packet

Exchange
(SPX)

Transmission
Control Protocol

(TCP),
Unacknowledged

Datagram
Protocol (UDP)

Sequenced
Packet

Protocol
(SPP)

ISO
8073
TP0-4

Network
Layer 3

Datagram
Delivery
Protocol
(DDP)

VINES
Internet
Protocol

(VIP)

Routing Path
Control

Internet
Packet

Exchange
(IPX)

Internet
Protocol

(IP)

Internet
Datagram
Protocol

(IDP)

ISO
8473

(CLNP)

Data Link
Layer 2

Network Interface Cards: Ethernet, Token-Ring, ARCNET, StarLAN, LocalTalk, FDDI, ATM, etc.
NIC Drivers: Open Datalink Interface (ODI), Network Independent Interface Specification (NDIS)

Physical
Layer 1

Transmission Media:
Twisted Pair, Coax, Fiber Optic, Wireless Media, etc.

 Return to Home

http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/vines.htm
http://www.lex-con.com/protocols/vines.htm
http://www.lex-con.com/protocols/vines.htm
http://www.lex-con.com/protocols/dec.htm
http://www.lex-con.com/protocols/dec.htm
http://www.lex-con.com/protocols/dec.htm
http://www.lex-con.com/protocols/dec.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ip.htm
http://www.lex-con.com/protocols/ip.htm
http://www.lex-con.com/protocols/xns.htm
http://www.lex-con.com/protocols/xns.htm
http://www.lex-con.com/protocols/xns.htm
http://www.lex-con.com/protocols/osi.htm
http://www.lex-con.com/protocols/osi.htm
http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/dec.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/osi.htm
http://www.lex-con.com/protocols/osi.htm
http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/vines.htm
http://www.lex-con.com/protocols/vines.htm
http://www.lex-con.com/protocols/vines.htm
http://www.lex-con.com/protocols/dec.htm
http://www.lex-con.com/protocols/dec.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ip.htm
http://www.lex-con.com/protocols/ip.htm
http://www.lex-con.com/protocols/ip.htm
http://www.lex-con.com/protocols/ip.htm
http://www.lex-con.com/protocols/ip.htm
http://www.lex-con.com/protocols/xns.htm
http://www.lex-con.com/protocols/xns.htm
http://www.lex-con.com/protocols/xns.htm
http://www.lex-con.com/protocols/osi.htm
http://www.lex-con.com/protocols/osi.htm
http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/at.htm
http://www.lex-con.com/protocols/vines.htm
http://www.lex-con.com/protocols/vines.htm
http://www.lex-con.com/protocols/vines.htm
http://www.lex-con.com/protocols/dec.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/smb.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ipx.htm
http://www.lex-con.com/protocols/ip.htm
http://www.lex-con.com/protocols/ip.htm
http://www.lex-con.com/protocols/xns.htm
http://www.lex-con.com/protocols/xns.htm
http://www.lex-con.com/protocols/xns.htm
http://www.lex-con.com/protocols/osi.htm
http://www.lex-con.com/protocols/osi.htm
http://www.lex-con.com/index.htm

location > OUTREACH : papers : 2001 : BackScatter

Inferring Internet Denial-of-Service Activity
Abstract for "Inferring Internet Denial-of-Service Activity" authored by David Moore,
Geoffrey Voelker, and Stefan Savage. Published in proceedings of the 2001 USENIX Security
Symposium.

Related animation: CAIDA's backscatter/denial-of-service animation available in quicktime
and mpg format.

| . Abstract .. Press Coverage .. Slides .. View full paper: ..
PDF .. gzipped postscript . |

Inferring Internet Denial-of-Service Activity

David Moore
Cooperative Association for Internet Data Analysis (CAIDA)
San Diego Supercomputer Center
University of California, San Diego

Geoffrey M. Voelker and Stefan Savage
Department of Computer Science and Engineering
University of California, San Diego

In this paper, we seek to answer a simple question: "How prevalent are denial-of-service
attacks in the Internet today?". Our motivation is to understand quantitatively the nature of the
current threat as well as to enable longer-term analyses of trends and recurring patterns of
attacks. We present a new technique, called "backscatter analysis", that provides an estimate
of worldwide denial-of-service activity. We use this approach on three week-long datasets to
assess the number, duration and focus of attacks, and to characterize their behavior. During
this period, we observe more than 12,000 attacks against more than 5,000 distinct targets,
ranging from well known e-commerce companies such as Amazon and Hotmail to small
foreign ISPs and dial-up connections. We believe that our work is the only publically
available data quantifying denial-of-service activity in the Internet.

| . Abstract .. Press Coverage .. Slides .. View full paper: ..

http://www.caida.org/members/
http://www.caida.org/projects/
http://www.caida.org/outreach/
http://www.caida.org/analysis/
http://www.caida.org/tools/
http://www.caida.org/home/
http://www.caida.org/home
http://www.caida.org/outreach/resources/
http://www.caida.org/outreach/presentations/
http://www.caida.org/outreach/papers/
http://www.caida.org/outreach/metricswg/
http://www.caida.org/outreach/isma/
http://www.caida.org/outreach/itl/
http://www.caida.org/outreach/iec/
http://www.caida.org/outreach/events
http://www.caida.org/home
http://www.caida.org/home
mailto:info@caida.org
http://www.caida.org/home/sitemap/index.xml
http://www.caida.org/home/index.xml
http://www.caida.org/home/index.xml
http://www.caida.org/home
http://www.caida.org/outreach/
http://www.caida.org/outreach/papers/
http://www.caida.org/outreach/papers/2001/
http://www.usenix.org/events/sec01/
http://www.usenix.org/events/sec01/
http://www.caida.org/outreach/resources/animations/
http://www.caida.org/outreach/resources/animations/
http://www.caida.org/outreach/papers/2001/BackScatter/index.xml
http://www.caida.org/outreach/papers/2001/BackScatter/press/
http://www.caida.org/outreach/presentations/usenix0108/dos/
http://www.caida.org/outreach/papers/2001/BackScatter/usenixsecurity01.ps.gz
http://www.caida.org/
http://www.sdsc.edu/
http://www.ucsd.edu/
http://www.cs.ucsd.edu/~voelker/
http://www.cs.ucsd.edu/~savage/
http://www.cs.ucsd.edu/
http://www.ucsd.edu/
http://www.caida.org/outreach/papers/2001/BackScatter/index.xml
http://www.caida.org/outreach/papers/2001/BackScatter/press/
http://www.caida.org/outreach/presentations/usenix0108/dos/

PDF .. gzipped postscript . |
Cooperative Association for Internet Data Analysis (CAIDA)

Page URL: http://www.caida.org/outreach/papers/2001/BackScatter/index.xml
Last updated: Sat Jan 12 06:23:33 PST 2002
Maintained by: Alex Ma

http://www.caida.org/outreach/papers/2001/BackScatter/usenixsecurity01.ps.gz

Inferring Inter net Denial-of-Service Activity

David Moore
CAIDA

SanDiego SupercomputerCenter
Universityof California, SanDiego

dmoore@caida.org

Geoffrey M. VoelkerandStefanSavage
Departmentof ComputerScienceandEngineering

Universityof California, SanDiego�
voelker,savage� @cs.ucsd.edu

Abstract

In thispaper, weseekto answerasimplequestion:“How
prevalentaredenial-of-serviceattacksin theInternetto-
day?”.Ourmotivationis to understandquantitatively the
natureof the currentthreataswell asto enablelonger-
termanalysesof trendsandrecurringpatternsof attacks.
We presenta new technique,called “backscatteranal-
ysis”, thatprovidesan estimateof worldwidedenial-of-
serviceactivity. Weusethisapproachonthreeweek-long
datasetsto assessthe number, durationandfocusof at-
tacks,andto characterizetheir behavior. During this pe-
riod, we observe morethan12,000attacksagainstmore
than5,000distinct targets,rangingfrom well known e-
commercecompaniessuchas Amazonand Hotmail to
small foreign ISPsanddial-upconnections.We believe
thatour work is theonly publically availabledataquan-
tifying denial-of-serviceactivity in theInternet.

1 Intr oduction

In Februaryof 2000,aseriesof massivedenial-of-service
(DoS) attacksincapacitatedseveral high-visibility In-
ternet e-commercesites, including Yahoo, Ebay, and
E*trade. Next, in Januaryof 2001, Microsoft’s name
server infrastructurewas disabledby a similar assault.
Despite attackson high-profile sites, the majority of
attacksare not well publicized. Many other domes-
tic and foreign sites have also been victims, ranging
from smaller commercialsites, to educationalinstitu-
tions,publicchatserversandgovernmentorganizations.

While it is clear from theseanecdotalreports that
denial-of-serviceattackscontinueto bea problem,there
is currentlynot muchquantitative dataaboutthe preva-
lenceof theseattacksnor any representative character-
ization of their behavior. Unfortunately, therearemul-

tiple obstacleshamperingthecollectionof anauthorita-
tive denial-of-servicetraffic dataset. Serviceproviders
and contentproviders considersuchdatasensitive and
private. Even if it were allowed, monitoring traf-
fic at enoughsites to obtain a representative measure
of Internet-wideattackspresentsa significantlogistical
challenge.Consequently, the only contemporarypublic
datawe areawareof is aCSI/FBIsurvey study[8]1.

Webelievethatastrongquantitativefoundationis nec-
essarybothfor understandingthenatureof today’sthreat
andasa baselinefor longer-term comparisonandanal-
ysis. Our paperseeksto answerthe simple question:
“How prevalentare denial-of-serviceattacksin the In-
ternettoday?”. As a meansto this end,we describea
traffic monitoring techniquecalled “backscatteranaly-
sis” for estimatingthe worldwideprevalenceof denial-
of-serviceattacks. Using backscatteranalysis,we ob-
serve12,805attacksonover5,000distinctInternethosts
belongingto morethan2,000distinctorganizationsdur-
ing a three-weekperiod.We furtherareableto estimate
a lower-boundon theintensityof suchattacks– someof
whicharein excessof 600,000packets-per-second(pps)
– andcharacterizethenatureof thesitesvictimized.

The remainderof this paper is organized as fol-
lows: Section2 describesthe underlying mechanisms
of denial-of-serviceattacks, Section 3 describesthe
backscattertechnique,and limitations arising from its
assumptions,andSection4 explainsour techniquesfor
classifyingattacksfrom monitoredbackscattertraffic. In
Section5 we describeour experimentalplatform, and
presentour resultsin Section6. Finally, in Sections7
and 8 we cover relatedwork andsummarizeour find-

1The primary result from this report is that 27 percentof security
professionalssurveyed detecteddenial-of-serviceattacksduring the
year2000.

ings.

2 Background

Denial-of-serviceattacksconsumetheresourcesof a re-
motehostor network that would otherwisebe usedfor
servinglegitimateusers.Therearetwo principalclasses
of attacks:logic attacksandfloodingattacks.Attacksin
the first class,suchas the “Ping-of-Death”,exploit ex-
isting softwareflaws to causeremoteserversto crashor
substantiallydegradein performance.Many of theseat-
tackscanbe preventedby eitherupgradingfaulty soft-
wareor filtering particularpacketsequences,but they re-
main a seriousand ongoingthreat. The secondclass,
floodingattacks,overwhelmthevictim’s CPU,memory,
or network resourcesby sendinglarge numbersof spu-
riousrequests.Becausethereis typically no simpleway
to distinguishthe“good” requestsfrom the“bad”, it can
beextremelydifficult to defendagainstfloodingattacks.
For the purposesof this study we will focus solely on
floodingattacks.

2.1 Attack types

Therearetwo relatedconsequencesto afloodingattack–
thenetwork loadinducedandtheimpacton thevictim’s
CPU. To load the network, an attacker generallysends
small packetsasrapidly aspossiblesincemostnetwork
devices(bothroutersandNICs)arelimited notby band-
width but by packetprocessingrate.Therefore,packets-
per-secondareusuallythebestmeasureof network load
duringanattack.

An attacker oftensimultaneouslyattemptsto loadthe
victim’s CPU by requiringadditionalprocessingabove
andbeyondthatrequiredto receive a packet. For exam-
ple, thebestknown denial-of-serviceattackis the“SYN
flood” [6] which consistsof a streamof TCPSYN pack-
ets directedto a listening TCP port at the victim. For
eachsuch SYN packet received, the host victim must
searchthroughexisting connectionsand if no matchis
found, allocatea new datastructurefor the connection.
Moreover, the numberof thesedatastructuresmay be
limited by thevictim’s operatingsystem.Consequently,
without additionalprotection,even a small SYN flood
canoverwhelma remotehost. Therearemany similar
attacksthat exploit othercodevulnerabilitiesincluding
TCP ACK, NUL, RST and DATA floods, IP fragment
floods,ICMP EchoRequestfloods,DNSRequestfloods,
andsoforth.

2.2 Distributed attacks

While a single host can causesignificant damageby
sendingpacketsat its maximumrate,attackerscan(and

Packet sent Responsefrom victim

TCPSYN (to openport) TCPSYN/ACK
TCPSYN (to closedport) TCPRST(ACK)
TCPACK TCPRST(ACK)
TCPDATA TCPRST(ACK)
TCPRST no response
TCPNULL TCPRST(ACK)
ICMP ECHORequest ICMP EchoReply
ICMP TS Request ICMP TSReply
UDPpkt (to openport) protocoldependent
UDPpkt (to closedport) ICMP PortUnreach
... ...

Table1: A sampleof victim responsesto typicalattacks.

do) mountmorepowerful attacksby leveragingthe re-
sourcesof multiple hosts. Typically an attacker com-
promisesa setof Internethosts(usingmanualor semi-
automatedmethods)andinstallsa small attackdaemon
oneach,producingagroupof “zombie” hosts.Thisdae-
mon typically containsboth the codefor sourcinga va-
riety of attacksandsomebasiccommunicationsinfras-
tructureto allow for remotecontrol. Using variantsof
thisbasicarchitectureanattackercanfocusacoordinated
attackfrom thousandsof zombiesontoasinglesite.

2.3 IP spoofing

To concealtheir location, therebyforestallingan effec-
tiveresponse,attackerstypically forge,or “spoof”, theIP
sourceaddressof eachpacket they send.Consequently,
thepacketsappearto thevictim to bearriving from one
or morethird parties.Spoofingcanalsobeusedto “re-
flect” an attackthroughan innocentthird party. While
we do not address“reflector attacks”in this paper, we
describethemmorefully in Section3.3.

3 Basicmethodology

As noted in the previous section,attackers commonly
spoof the sourceIP addressfield to concealthe loca-
tion of the attackinghost. The key observation behind
our techniqueis that for directdenial-of-serviceattacks,
most programsselectsourceaddressesat randomfor
eachpacketsent.Theseprogramsincludeall of themost
populardistributedattackingtools: Shaft,TFN, TFN2k,
trinoo, all variantsof Stacheldraht,mstreamand Trin-
ity). When a spoofedpacket arrivesat the victim, the
victim usuallysendswhat it believesto be an appropri-
ate responseto the faked IP address(suchasshown in
Table1). Occasionally, an intermediatenetwork device
(suchasa router, load balancer, or firewall) may issue
its own reply to the attackvia an ICMP message[21].

Attack

Backscatter

Attacker

Victim

B

C

D

VB C VD V

SYN packets

Figure 1: An illustration of backscatterin action. Here the
attacker sendsa seriesof SYN packets towardsthe victim V,
usinga seriesof randomspoofedsourceaddresses:namedC,
B, andD. Uponreceiving thesepacketsthevictim respondsby
sendingSYN/ACKs to eachof spoofedhosts.

Again, theseICMP messagesare sentto the randomly
spoofedsourceaddress.

Becausethe attacker’s sourceaddressis selectedat
random,the victim’s responsesare equi-probablydis-
tributedacrossthe entire Internetaddressspace,an in-
advertenteffect we call “backscatter”2. This behavior is
illustratedin Figure1.

3.1 Backscatteranalysis

Assumingper-packet randomsourceaddresses,reliable
delivery andoneresponsegeneratedfor every packet in
anattack,theprobabilityof a givenhoston the Internet
receiving at leastoneunsolicitedresponsefrom thevic-
tim is ������ duringanattackof � packets.Similarly, if one
monitors	 distinct IP addresses,thentheexpectationof
observinganattackis:

���
���� 	����� �

By observinga largeenoughaddressrangewecanef-
fectively “sample” all suchdenial-of-serviceactivity on
theInternet.Containedin thesesamplesaretheidentity
of thevictim, informationaboutthekind of attack,anda
timestampfrom which we canestimateattackduration.
Moreover, giventheseassumptions,we canalsousethe
averagearrival rateof unsolicitedresponsesdirectedat
the monitoredaddressrangeto estimatethe actualrate

2We did not originatethis term. It is borrowed from VernPaxson
who independentlydiscoveredthesamebackscattereffect whenanat-
tack accidentallydisruptedmulticastconnectivity by selectingglobal
multicastaddressesassourceaddresses[20].

of theattackbeingdirectedat thevictim, asfollows:

������� � � �
	

where
� �

is the measuredaverageinter-arrival rate of
backscatterfrom thevictim and

�
is theextrapolatedat-

tackratein packets-per-second.

3.2 Addr essuniformity

Theestimationapproachoutlinedabove dependson the
spoofedsourceaddressesbeing uniformly distributed
acrossthe entireIP addressspace.To checkwhethera
sampleof observedaddressesareuniform in our moni-
toredaddressrange,we computethe Anderson-Darling
(A2) test statistic [9] to determineif the observations
areconsistentwith a uniform distribution. In particular,
we usethe implementationof theA2 testasspecifiedin
RFC2330[19] ata 0.05significancelevel.

3.3 Analysis limitations

Therearethreeassumptionsthatunderlyour analysis:

� Address uniformity: attackers spoof source ad-
dressesat random.

� Reliabledelivery: attacktraffic is deliveredreliably
to thevictim andbackscatteris deliveredreliably to
themonitor.

� Backscatter hypothesis: unsolicited packets ob-
servedby themonitorrepresentbackscatter.

Wediscusspotentialbiasesthatarisefrom theseassump-
tionsbelow.

Key amongourassumptionsis therandomselectionof
sourceaddress.Therearethreereasonswhy thisassump-
tion may not be valid. First, someISPsemploy ingress
filtering [12, 5] on their routersto drop packets with
sourceIP addressesoutsidetherangeof acustomer’snet-
work. Thus,anattacker’s sourceaddressrangemaynot
includeany of our monitoredaddressesandwe will un-
derestimatethetotalnumberof attacks.

“Reflectorattacks”posea secondproblemfor source
addressuniformity. In this situation,an attacker “laun-
ders” the attackby sendinga packet spoofedwith the
victim’s sourceaddressto a third party. The third party
respondsby sendinga responsebacktowardsthevictim.
If the packets to the third partie are addressedusing a
broadcastaddress(aswith the popularsmurf or fraggle
attacks)thenthird partiesmayfurtheramplify theattack.
Thekey issuewith reflectorattacksis thatthesourcead-
dressis specificallyselected.UnlessanIP addressin the
rangewemonitoris usedasareflector, wewill beunable

to observetheattack.Wehavedetectedno instancesof a
monitoredhostinvolvedin thissortof attack.Our inabil-
ity to detect,“reflectorattacks”causeusto underestimate
thetotal numberof denial-of-serviceattacks.

Finally, if the distribution of sourceaddressesis not
random,thenany attemptto extrapolatethe attackrate
via the arrival rate of responseswill producean arbi-
trarily biasedresult. This particular problem can be
mitigatedby verifying that the distribution of observed
sourceaddressesis indeeduniform within the setof 	
addressesweobserve.

Another limitation arisesfrom our assumptionthat
packetsaredeliveredreliably andthatevery packet gen-
eratesa response.During a large attackit is likely that
packets from the attacker may be queuedanddropped.
Thosepackets that do arrive may be filtered or rate-
limited by firewall or intrusiondetectionsoftware[4] and
moreover someforms of attacktraffic (e.g., TCP RST
messages)do not typically elicit a response.Finally, the
responsesthemselvesmaybequeuedanddroppedalong
thepathbackto our monitoredaddressrange.In partic-
ular, our estimateof theattackrateis necessarilylimited
to the capacityof smallestbottlenecklink betweenthe
victim andourmonitor. As with our randomdistribution
assumption,theselimitationswill causeusto underesti-
matethenumberof attacksandtheattackrate.However,
they mayalsobiasour characterizationof victims (e.g.,
if large e-commercesitesaremore likely to have rate-
limiting software than educationalsites, then we may
disproportionatelyunderestimatethe size of attackson
this classof victim).

The final limitation of our techniqueis that we as-
sumeunsolicitedresponsesrepresentbackscatterfrom
anattack.Any server on theInternetis free to sendun-
solicitedpacketsto our monitoredaddresses,andthese
packets may be misinterpretedas backscatterfrom an
attack. It is possibleto eliminateaccidentalerrorsby
choosinga quiescentaddressrangefor monitoring,fil-
teringthosepacketflowsconsistentlydestinedto asingle
hostin therangeandby high-passfiltering to only record
sufficiently long and voluminouspacket flows. How-
ever, aconcertedeffort by athird-partyto biasourresults
would be difficult to detectand correct automatically.
The most likely sourceof suchbiasarisesfrom misin-
terpretationof randomport scansasbackscatter. While
it is impossibleto eliminatethis possibility in general,
we will show that it is extremelyunlikely to bea factor
in thevastmajorityof attackswe observe.

In spiteof its limitations, we believe our overall ap-
proachis soundandprovidesat worsta conservativees-
timateof currentdenial-of-serviceactivity.

4 Attack Classification

After collectinga largetraceof backscatterpackets,the
first taskis post-processingthe trace.For this we group
collectionsof relatedpackets into clustersrepresenting
attacks.Thechoiceof a specificaggregationmethodol-
ogy presentssignificantchallenges.For example,it is
often unclearwhethercontemporaneousbackscatterin-
dicating both TCP and ICMP-basedattacksshouldbe
classifiedasasingleattackor multipleattacks.Moredif-
ficult still is theproblemof determiningthestartandend
timesof anattack.In thepresenceof significantvariabil-
ity, too lenienta thresholdcanbiastheanalysistowards
fewer attacksof longerdurationandlow averagepacket
rates,while too strict an interpretationsuggestsa large
numberof shortattackswith highly variablerates.

Without knowledgeof the intentof theattacker or di-
rectobservationof theattackasit orchestratedby theat-
tacker, it is impossibleto createasyntheticclassification
systemthatwill groupall typesof attacksappropriately
for all metrics. Instead,we have chosento employ two
distinctclassificationmethods:aflow-basedanalysisfor
classifyingindividualattacks– how many, how longand
whatkind – andanevent-basedmethodfor analyzingthe
severity of attackson shorttimescales.

4.1 Flow-basedclassification

For the purposeof this study, we definea flow asa se-
riesof consecutivepacketssharingthesametargetIP ad-
dressandIP protocol. We exploredseveral approaches
for defining flow lifetimes andsettledon a fixed time-
out approach:the first packet seenfor a target creates
a new flow andany additionalpackets from that target
arecountedasbelongingto that flow if the packetsare
received within five minutesof the most recentpacket
in this flow. The choiceof parametersherecan influ-
encethefinal results,sincea moreconservative timeout
will tendto suggestfewer, longerattacks,while ashorter
timeoutwill suggesta largenumberof shortattacks.We
chosefive minutesasa human-sensiblebalancethat is
not unduly affectedby punctuatedattacksor temporary
outages.

To reducenoiseand traffic generateddue to random
Internet misconfiguration(for instance,one NetBIOS
implementation/configurationsendssmall numbersun-
solicitedpacketsto ourmonitoredaddressrange)wedis-
cardall flows that do not have at least100 packetsand
a flow durationof at least60 seconds. Theseparam-
etersare also somewhat arbitrary, but we believe they
representa reasonablebaseline– below suchthresholds
it seemsunlikely that an attackwould causesignificant
damage.Finally, flowsmustcontainpacketssentto more
thanoneof our monitoredaddresses.

We examineeachindividual flow andextract the fol-
lowing information:

� TCP flag settings: whether the flow consistsof
SYN/ACKs,RSTs,etc.

� ICMP payload: for ICMP packets that contain
copiesof theoriginal packet (e.g.TTL expired)we
breakout the enclosedaddresses,protocols,ports,
etc.

� Address uniformity: whether the distribution of
sourceaddresseswithin ourmonitoredrangepasses
theAnderson-Darling(A2) testfor uniformity to the
0.05significancelevel.

� Port settings: for sourceanddestinationports(for
both UDP and TCP) we record whetherthe port
rangeis fixed, is uniform underthe A2 test, or is
non-fixedandnon-uniform.

� DNS information: the full DNS addressof the
sourceaddress– thevictim.

� Routing information: the prefix, maskand origin
ASasregisteredin ourlocalBGPtableonthemorn-
ing of February7th.

We generatea databasein which eachrecordcharac-
terizesthepropertiesof a singleattack.

4.2 Event-basedclassification

Becausethe choiceof flow parameterscan impact the
estimateddurationof an attack,the flow-basedmethod
mayobscureinterestingtime-domaincharacteristics.In
particular, attackscanbehighly variable– with periodic
bursts of activity – causingthe flow-basedmethodto
vastly underestimatethe short-termimpactof an attack
andoverestimatethelong-termimpact.

Weuseanevent-basedclassificationmethodkeyeden-
tirely onthevictim’sIP addressoverfixedtime-windows
for examiningtime-domainqualities,suchasthenumber
of simultaneousattacksor thedistributionof attackrates,
For theseanalyseswe divide our traceinto oneminute
periodsandrecordeachattack eventduring this period.
An attackevent is definedby a victim emitting at least
tenbackscatterpacketsduringa oneminuteperiod. We
donotfurtherclassifyattacksaccordingto protocoltype,
port, etc,asthegoal is to estimatetheinstantaneousim-
pacton a particularvictim. Theresultof this classifica-
tion is a databasein which eachrecordcharacterizesthe
numberof victimsandtheintensityof theattacksin each
oneminuteperiod.

Monitor

Hub

/8 Network

Internet

Figure 2: Our experimentalbackscattercollection platform.
Wemonitorall traffic toour/8 network bypassively monitoring
dataasit is forwardedthrougha sharedhub. This monitoring
point representstheonly ingressinto thenetwork.

5 Experimental platform

For our experimentsmonitoredthesoleingresslink into
a lightly utilized /8 network (comprising

� ���
distinct IP

addresses,or 1/256of the total Internetaddressspace).
Our monitoring infrastructure,shown in Figure2, con-
sistedof a PC configuredto captureall Ethernettraffic,
attachedto a sharedhub at the router terminatingthis
network. During this time, the upstreamrouterdid fil-
tersometraffic destinedto thenetwork (notablyexternal
SNMP queries)but we do not believe that this signifi-
cantlyimpactedour results.Wealsohavesomeevidence
that small portionsof our addressprefix are occasion-
ally “hijacked” by inadvertentrouteadvertisementselse-
wherein the Internet,but at worst this shouldcauseus
to slightly underestimateattackintensities.We collected
threetraces,eachroughly spanningone week, starting
onFebruary1standextendingto February25th,andiso-
latedtheinboundportionof thenetwork.

6 Results

Using the previously describedflows-basedapproach
(Section4.1),weobserved12,805attacksoverthecourse
of a week. Table2 summarizesthis data,showing more
than 5,000 distinct victim IP addressesin more than
2,000distinctDNSdomains.Acrosstheentireperiodwe
observedalmost200million backscatterpackets(again,
representinglessthan ��!�" of theactualattacktraffic dur-
ing this period).

In this section,we first show theoverall frequency of
attacksseenin our trace,and then characterizethe at-
tacksaccordingto boththetypeof attackandthetypeof
victim.

Trace-1 Trace-2 Trace-3
Dates(2001) Feb01– 08 Feb11 – 18 Feb18 – 25
Duration 7.5days 6.2days 7.1days

Flow-basedAttacks:
Uniquevictim IPs 1,942 1,821 2,385
Uniquevictim DNS domains 750 693 876
Uniquevictim DNS TLDs 60 62 71
Uniquevictim network prefixes 1,132 1,085 1,281
Uniquevictim AutonomousSystems 585 575 677
Attacks 4,173 3,878 4,754
Totalattackpackets 50,827,217 78,234,768 62,233,762

Event-basedAttacks:
Uniquevictim IPs 3,147 3,034 3,849
Uniquevictim DNS domains 987 925 1,128
Uniquevictim DNS TLDs 73 71 81
Uniquevictim network prefixes 1,577 1,511 1,744
Uniquevictim AutonomousSystems 752 755 874
AttackEvents 112,457 102,204 110,025
Totalattackpackets 51,119,549 78,655,631 62,394,290

Table2: Summaryof backscatterdatabase.

0

20

40

60

80

100

120

140

160

180

200

00:00
02/02

00:00
02/05

00:00
02/08

00:00
02/11

00:00
02/14

00:00
02/17

00:00
02/20

00:00
02/23

U
ni

qu
e

V
ic

tim
 IP

s/
ho

ur

#

Time

Trace-1
Trace-2
Trace-3

Figure3: Estimatednumberof attacksperhourasa functionof time(UTC).

Kind Trace-1 Trace-2 Trace-3
Attacks Packets(k) Attacks Packets(k) Attacks Packets(k)

TCP(RSTACK) 2,027 (49) 12,656 (25) 1,837 (47) 15,265 (20) 2,118 (45) 11,244 (18)
ICMP (HostUnreachable) 699 (17) 2,892 (5.7) 560 (14) 27,776 (36) 776 (16) 19,719 (32)
ICMP (TTL Exceeded) 453 (11) 31,468 (62) 495 (13) 32,001 (41) 626 (13) 22,150 (36)
ICMP (Other) 486 (12) 580 (1.1) 441 (11) 640 (0.82) 520 (11) 472 (0.76)
TCP(SYN ACK) 378 (9.1) 919 (1.8) 276 (7.1) 1,580 (2.0) 346 (7.3) 937 (1.5)
TCP(RST) 128 (3.1) 2,309 (4.5) 269 (6.9) 974 (1.2) 367 (7.7) 7,712 (12)
TCP(Other) 2 (0.05) 3 (0.01) 0 (0.00) 0 (0.00) 1 (0.02) 0 (0.00)

Table3: Breakdown of responseprotocols.

6.1 Time series

Figure 3 shows a time seriesgraph of the estimated
numberof actively attackedvictims throughoutthethree
traces,assampledin onehour periods. Thereare two
gapsin this graph correspondingto the gapsbetween
traces. In contrastto otherworkloads,suchasHTTP,
the numberof active attacksdoesnot appearto follow
any diurnalpattern(at leastasobservedfrom asinglelo-
cation).Theoutlierson theweekof February20th,with
more than 150 victim IP addressesper hour, represent
broadattacksagainstmany machinesin a commonnet-
work. While mostof the backscatterdataaveragesone
victim IP addressper network prefix per hour, the ratio
climbsto abovefive for many outliers.

6.2 Attack classification

In this sectionwe characterizeattacksaccordingto the
protocolsusedin responsepacketssentby victims, the
protocolsusedin theoriginalattackpackets,andtherate
anddurationsof attacks.

6.2.1 Responseprotocols

In Table3 wedecomposeourbackscatterdataaccording
to theprotocolsof responsesreturnedby thevictim or an
intermediatehost. For eachtracewe list both the num-
berof attacksandthenumberbackscatterpacketsfor the
given protocol. The numbersin parenthesesshow the
relative percentagerepresentedby eachcount. For ex-
ample,1,837attacksin Trace2 (47%of thetotal), were
derived from TCP backscatterwith the RST and ACK
flagsset.

We observe that over 50% of the attacksand20% of
the backscatterpacketsare TCP packetswith the RST
flag set. Referringbackto Table1 we seethat RST is
sentin responseto eithera SYN flood directedagainsta
closedport or someotherunexpectedTCP packet. The
next largestprotocolcategoryis ICMP hostunreachable,
comprisingroughly 15% of the attacks. Almost all of
theseICMP messagescontain the TCP headerfrom a
packet directedat thevictim, suggestinga TCPflood of

somesort. Unfortunately, theTCP flagsfield cannotbe
recovered,becausetheICMP responseonly includesthe
first 28 bytesof the original IP packet. ICMP hostun-
reachableis generallyreturnedby arouterwhenapacket
cannotbeforwardedto its destination.Probingsomeof
thesevictims we confirmedthata numberof themcould
not bereached,but mostwereaccessible,suggestingin-
termittentconnectivity. This discontinuousreachability
is probablycausedby explicit “black holing’ on thepart
of anISP.

We alsoseea numberof SYN/ACK backscatterpack-
ets(likely sentdirectly in responseto a SYN floodon an
openport) andan equivalentnumberof assortedICMP
messages,including ICMP echo reply (resulting from
ICMP echorequestfloods),ICMP protocolunreachable
(sentin responseto attacksusingillegalcombinationsof
TCP flags), ICMP fragmentationneeded(causedby at-
tackswith the “Dont Fragment”bit set)and ICMP ad-
ministratively filtered (likely the result of someattack
countermeasure).However, a more surprisingfinding
is the large numberof ICMP TTL exceededmessages
– comprisingbetween36% and62% of all backscatter
packetsobserved,yet lessthan15%of thetotal attacks.
In fact, the vastmajority of thesepacketsoccur in just
a few attacks,including threeattackson @Homecus-
tomers,two on ChinaTelecom(onewith almost9 mil-
lion backscatterpackets),andothersdirectedat Roma-
nia, Belgium, Switzerlandand New Zealand. The at-
tackon thelatterwasat anextremelyhigh rate,suggest-
ing an attackof morethan150,000packetsper second.
We areunableto completelyexplain themechanismfor
the generationof thesetime-exceededmessages.Upon
examinationof theencapsulatedheaderthat is returned,
we notethatseveralof themshareidentical“signatures”
(ICMP Echowith identicalsequencenumber, identifica-
tion fields,andchecksum)suggestingthatasingleattack
tool wasin use.

6.2.2 Attack protocols

We refine this datain Table 4 to show the distribution
of attack protocols. That is, the protocol which must

Kind Trace-1 Trace-2 Trace-3
Attacks Packets(k) Attacks Packets(k) Attacks Packets(k)

TCP 3,902 (94) 28,705 (56) 3,472 (90) 53,999 (69) 4,378 (92) 43,555 (70)
UDP 99 (2.4) 66 (0.13) 194 (5.0) 316 (0.40) 131 (2.8) 91 (0.15)
ICMP 88 (2.1) 22,020 (43) 102 (2.6) 23,875 (31) 107 (2.3) 18,487 (30)
Proto0 65 (1.6) 25 (0.05) 108 (2.8) 43 (0.06) 104 (2.2) 49 (0.08)
Other 19 (0.46) 12 (0.02) 2 (0.05) 1 (0.00) 34 (0.72) 52 (0.08)

Table4: Breakdown of protocolsusedin attacks.

0

10

20

30

40

50

60

70

80

90

100

10 100 1000 10000 100000 1e+06

P
er

ce
nt

 o
f A

tta
ck

s

$

Estimated Rate (Packets Per Second)

All Attacks
Uniform Random Attacks

Figure4: Cumulativedistributionsof estimatedattackratesin
packetspersecond.

have beenusedby theattacker to producethebackscat-
termonitoredatournetwork. Weseethatmorethan90%
of theattacksuseTCPastheir protocolof choice,but a
smallernumberof ICMP-basedattacksproduceadispro-
portionatenumberof thebackscatterpacketsseen.Other
protocolsrepresenta minor numberof bothattacksand
backscatterpackets. This patternis consistentacrossall
threetraces.

In Table 5 we further breakdown our datasetbased
on the service(asrevealedin the victim’s port number)
being attacked. Most of the attacksfocus on multiple
ports,ratherthana singleoneandmostof thesearewell
spreadthroughoutthe addressrange. Many attackpro-
gramsselectrandomportsabove1024;this mayexplain
why lessthan25%of attacksshow acompletelyuniform
randomportdistributionaccordingto theA2 test.Of the
remainingattacks,themostpopularstaticcategoriesare
port 6667(IRC), port 80 (HTTP), port 23 (Telnet),port
113 (Authd). The large numberof packetsdirectedat
port 0 is an artifact of our ICMP categorization– there
arefewer thanten TCP attacksdirectedat port 0, com-
prisinga totalof lessthan9,000packets.

6.2.3 Attack rate

Figure 4 shows two cumulative distributions of attack
eventratesin packetspersecond.Thelowercurveshows
thecumulative distribution of event ratesfor all attacks,

and the uppercurve shows the cumulative distribution
of event ratesfor uniform randomattacks,i.e., thoseat-
tackswhosesourceIP addressessatisfiedthe A2 uni-
form distribution test describedin Section3.2. As de-
scribedearlier, wecalculatetheattackeventrateby mul-
tiplying theaveragearrival rateof backscatterpacketsby
256 (assumingthat an attackrepresentsa randomsam-
pling acrosstheentireaddressspace,of which we mon-
itor ��!�"). Almost all attackshave no dominantmodein
theaddressdistribution, but sometimessmalldeviations
from uniformity preventtheA2 testfrom beingsatisfied.
For this reasonwe believe that thereis likely someva-
lidity in theextrapolationappliedto thecompleteattack
dataset.Notethat theattackrate(x-axis) is shown using
a logarithmicscale.

Comparingthe distributions,we seethat the uniform
randomattackshave a lower ratethanthedistribution of
all attacks,but trackclosely. Half of theuniformrandom
attackeventshaveapacketrategreaterthan250,whereas
half of all attackeventshave a packet rategreaterthan
350. The fastestuniform randomevent is over 517,000
packetsper second,whereasthe fastestoverall event is
over679,000packetspersecond.

How threateningarethe attacksthat we see?Recent
experimentswith SYN attackson commercialplatforms
show that an attackrate of only 500 SYN packets per
secondis enoughto overwhelma server [10]. In our
trace,38%of uniform randomattackeventsand46%of
all attackeventshadanestimatedrateof 500packetsper
secondor higher. Thesameexperimentsshow thateven
with aspecializedfirewall designedto resistSYN floods,
a server can be disabledby a flood of 14,000packets
per second. In our data,0.3% of the uniform random
attacksand2.4%of all attackeventswouldstill compro-
mise theseattack-resistantfirewalls. We concludethat
the majority of the attacksthat we have monitoredare
fast enoughto overwhelmcommoditysolutions,and a
small fraction arefastenoughto overwhelmeven opti-
mizedcountermeasures.

Of course,one significant factor in the questionof
threatposedby an attackis the connectivity of the vic-
tim. An attackratethatoverwhelmsa cablemodemvic-
tim maybetrivial awell-connectedmajorserver installa-
tion. Victim connectivity is a difficult to ascertainwith-

Kind Trace-1 Trace-2 Trace-3
Attacks Packets(k) Attacks Packets(k) Attacks Packets(k)

Multiple Ports 2,740 (66) 24,996 (49) 2,546 (66) 45,660 (58) 2,803 (59) 26,202 (42)
Uniformly Random 655 (16) 1,584 (3.1) 721 (19) 5,586 (7.1) 1,076 (23) 15,004 (24)
Other 267 (6.4) 994 (2.0) 204 (5.3) 1,080 (1.4) 266 (5.6) 410 (0.66)
PortUnknown 91 (2.2) 44 (0.09) 114 (2.9) 47 (0.06) 155 (3.3) 150 (0.24)
HTTP(80) 94 (2.3) 334 (0.66) 79 (2.0) 857 (1.1) 175 (3.7) 478 (0.77)
0 78 (1.9) 22,007 (43) 90 (2.3) 23,765 (30) 99 (2.1) 18,227 (29)
IRC (6667) 114 (2.7) 526 (1.0) 39 (1.0) 211 (0.27) 57 (1.2) 1,016 (1.6)
Authd (113) 34 (0.81) 49 (0.10) 52 (1.3) 161 (0.21) 53 (1.1) 533 (0.86)
Telnet(23) 67 (1.6) 252 (0.50) 18 (0.46) 467 (0.60) 27 (0.57) 160 (0.26)
DNS(53) 30 (0.72) 39 (0.08) 3 (0.08) 3 (0.00) 25 (0.53) 38 (0.06)
SSH(22) 3 (0.07) 2 (0.00) 12 (0.31) 397 (0.51) 18 (0.38) 15 (0.02)

Table5: Breakdown of attacksby victim portnumber.

1
min

2 5% 10 30 1
hour& 2 6' 12 1

day(2 7

Attack Duration)

0

1

10

100

%
 A

tta
ck

s

*

Figure5: Cumulative distributionof attackdurations.

out flooding the victim’s link. Consequently, we leave
correlationbetweenattackratesandvictim connectivity
asanopenproblem.

6.2.4 Attack duration

While attackevent ratescharacterizethe intensityof at-
tacks,they do not give insight on how long attacksare
sustained.For this metric, we characterizethe duration
of attacksin Figures5 and6 acrossall threeweeksof
tracedata.In thesegraphs,weusetheflow-basedclassi-
ficationdescribedin Section4 becauseflowsbetterchar-
acterizeattackdurationswhile remaininginsensitive to
intensity. We also combineall threeweeksof attacks
for clarity; the distributionsarenearlydenticalfor each
week,andindividualweeklycurvesoverlapandobscure
eachother.

Figure 5 shows the cumulative distribution of attack
durationsin unitsof time;notethatboththeaxesarelog-
arithmicscale.In this graphwe seethatmostattacksare

1+
min

2, 5- 10 30 1+
hour. 2, 6/ 12 1+

day0 2, 71
Attack Duration

0

1

2

3

%
 A

tta
ck

s
2

Figure6: Probabilitydensityof attackdurations.

relatively short:50%of attacksarelessthan10 minutes
in duration,80%arelessthan30 minutes,and90%last
lessthanan hour. However, the tail of the distribution
is long: 2% of attacksaregreaterthan5 hours,1% are
greaterthan10hours,anddozensspannedmultipledays.

Figure 6 shows the probability densityof attackdu-
rationsas definedusing a histogramof 150 buckets in
the log time domain. The x-axis is in logarithmicunits
of time, andthe y-axis is the percentageof attacksthat
lasteda given amountof time. For example,when the
curve crossesthe y-axis, it indicatesthatapproximately
0.5%of attackshada durationof 1 minute. As we saw
in the CDF, the bulk of the attacksarerelatively short,
lastingfrom 3–20minutes.Fromthis graph,though,we
seethattherearepeaksat roundedtime durationsin this
interval at durationsof 5, 10, and20 minutes. Immedi-
atelybeforethis interval thereis apeakat3 minutes,and
immediatelyaftera peakat 30 minutes.For attackswith
longerdurations,we seea local peakat 2 hoursin the
long tail.

6.3 Victim classification

In thissectionwecharacterizevictimsaccordingto DNS
name,top-level domain,AutonomousSystem,and de-
greeof repeatedattacks.

6.3.1 Victim Name

Table 6 shows the distribution of attacksaccordingto
the DNS nameassociatedwith the victim’s IP address.
We classify theseusinga hand-tunedsetof regular ex-
pressionmatches(i.e. DNS nameswith “dialup” repre-
sentmodems,“dsl” or “home.com”representbroadband,
etc). The majority of attacksare not classifiedby this
scheme,eitherbecausethey arenot matchedby our cri-
teria (shown by “other”), or more likely, becausethere
wasno valid reverseDNS mapping(shown by “In-Addr
Arpa”).

Of the remainingattacksthere are several interest-
ing observations. First, there is a significant frac-
tion of attacksdirected againsthome machines– ei-
ther dialup or broadband.Someof theseattacks,par-
ticularly those directed towards cable modem users,
constituterelatively large, severe attackswith ratesin
the thousandsof packets per second. This suggests
that minor denial-of-serviceattacksare frequentlybe-
ing usedto settlepersonalvendettas.In the samevein
we anecdotallyobserve a significantnumberof attacks
againstvictims running “Internet Relay Chat” (IRC),
victims supportingmulti-player game use (e.g. bat-
tle.net), and victims with DNS namesthat are sex-
ually suggestive or incorporate themesof drug use.
We further note that many reverse DNS mappings
have beenclearly beencompromisedby attackers(e.g.,
DNS translationssuch as “is.on.the.net.illegal.ly” and
“the.feds.cant.secure.their.shellz.ca”).

Second,there is a small but significant fraction of
attacks directed against network infrastructure. Be-
tween 2–3% of attacks target name servers (e.g.,
ns4.reliablehosting.com),while 1–3% target routers
(e.g.,core2-corel-oc48.paol.above.net). Again, someof
theseattacks,particularlyafew destinedtowardsrouters,
are comprisedof a disproportionatelylarge numberof
packets.Thispoint is particularlydisturbing,sinceover-
whelming a router could deny serviceto all end hosts
thatrely uponthatrouterfor connectivity.

Finally, we aresurprisedat the diversity of different
commercialattacktargets. While we certainly find at-
tacksonbellwetherInternetsitesincludingaol.com,aka-
mai.com,amazon.comandhotmail.com,we alsoseeat-
tacksagainsta largerangeof smallerandmediumsized
businesses.

0

5

10

15

20

25

30

35

un
kn

ow
n

ne
t

co
m ro br or

g
ed

u ca de uk

Top-Level Domain

P
er

ce
n

t
o

f
A

tt
ac

ks

Week 1
Week 2
Week 3

Figure7: Distribution of attacksto the 10 top-level domains
(TLDs) thatreceivedthemostnumberof attacks.

6.3.2 Top-level domains

Figure7 shows thedistribution of attacksto the10 most
frequentlytargetedtop-level domains(TLDs). For each
TLD displayedonthex-axis,weshow onevaluefor each
of thethreeweeksof our studyin progressive shadesof
grey. Note that the TLDs aresortedby overall attacks
acrossall threeweeks.

Comparingthe numberof attacksto eachTLD from
weekto week,we seethat thereis little variation. Each
TLD is targetedby roughly the samepercentageof at-
tacks each week. The domain unknown represents
thoseattacksin which a reverseDNS lookup failed on
thevictim IP address(just under30%of all attacks).In
termsof the “three-letter”domains,bothcom andnet
were eachtargetedby roughly 15% of the attacks,but
edu and org were only targetedby 2–4% of the at-
tacks.This is notsurprising,assitesin thecom andnet
presentmoreattractiveandnewsworthytargets.Interest-
ingly, althoughonemight have expectedattacksto sites
in mil, mil did not show up in any of our reverseDNS
lookups.Wedonotyetknow whatto concludefrom this
result;for example,it couldbethatmil targetsfall into
ourunknown category.

In termsof thecountry-codeTLDs, we seethat there
is a disproportionateconcentrationof attacksto a small
groupof countries.Surprisingly, Romania(ro), a coun-
try with a relatively poornetworking infrastructure,was
targetednearlyasfrequentlyasnet andcom, andBrazil
(br) wastargetedalmostmorethanedu andorg com-
bined.Canada,Germany, andtheUnitedKingdomwere
all weretargetedby 1–2%of attacks.

6.3.3 AutonomousSystems

As another aggregation of attack targets, we exam-
ined the distribution of attacksto AutonomousSystems
(ASes). To determinethe origin AS numberassociated

Kind Trace-1 Trace-2 Trace-3
Attacks Packets(k) Attacks Packets(k) Attacks Packets(k)

Other 1,917 (46) 19,118 (38) 1,985 (51) 25,305 (32) 2,308 (49) 17,192 (28)
In-Addr Arpa 1,230 (29) 16,716 (33) 1,105 (28) 24,645 (32) 1,307 (27) 26,880 (43)
Broadband 394 (9.4) 9,869 (19) 275 (7.1) 13,054 (17) 375 (7.9) 8,513 (14)
Dial-Up 239 (5.7) 956 (1.9) 163 (4.2) 343 (0.44) 276 (5.8) 1,018 (1.6)
IRC Server 110 (2.6) 461 (0.91) 88 (2.3) 2,289 (2.9) 111 (2.3) 6,476 (10)
Nameserver 124 (3.0) 453 (0.89) 84 (2.2) 2,796 (3.6) 90 (1.9) 451 (0.72)
Router 58 (1.4) 2,698 (5.3) 76 (2.0) 4,055 (5.2) 125 (2.6) 682 (1.1)
WebServer 54 (1.3) 393 (0.77) 64 (1.7) 5,674 (7.3) 134 (2.8) 730 (1.2)
Mail Server 38 (0.91) 156 (0.31) 35 (0.90) 71 (0.09) 26 (0.55) 292 (0.47)
Firewall 9 (0.22) 7 (0.01) 3 (0.08) 3 (0.00) 2 (0.04) 1 (0.00)

Table6: Breakdown of victim hostnames.

0

1

2

3

4

5

6

STARNETS (6
66

3)

NOROUTE (*
)

ALT
ERNET-A

S (7
01

)

HOM
E-N

ET-1
 (6

17
2)

EM
BRATEL-

BR (4
23

0)

RDSNET (8
70

8)

NETSAT-A
S (1

11
27

)

AS12
30

2
(1

23
02

)

TELE
BAHIA

 (7
73

8)

SPRIN
TLI

NK (1
23

9)

ASN-Q
W

EST (2
09

)

TELI
ANET-S

E (3
30

1)

TOPEDGE (9
17

6)

BHNET (1
17

06
)

AS83
38

 (8
33

8)

ECOSOFT (1
59

71
)

AS15
66

2
(1

56
62

)

Autonomous System

P
er

ce
n

t
o

f
A

tt
ac

ks Week 1
Week 2
Week 3

Figure 8: Distribution of attacksto AutonomousSystems
(ASes)thatweretargetedby at least1% of all attacks.

with the victim of an attack,we performedlongestpre-
fix matchingagainsta BGP routing tableusingthe vic-
tim’s IP address.To constructthis table,we took asnap-
shotfrom a borderrouterwith globalroutesonFebruary
7, 2001. We then mappedAS numbersto identifying
namesusing the NetGeo[17] serviceto do lookupsin
registry whoisservers. We labeledaddresseswhich had
no matchingprefixas”NOROUTE”.

Figure 8 shows the distribution of attacksto the 17
ASesthatweretargetedby at least1% of all attacks.As
with top-level domains,eachAS namedon thex-axis is
associatedwith threevalues,one for eachof the three
weeksof our studyin progressive shadesof grey. Note
thattheASesaresortedby overallattacksacrossall three
weeks.

FromFigure8, we seethatno singleAS or small set
of ASesis the targetof anoverwhelmingfractionof at-
tacks: STARNETS wasattacked the most,but only re-
ceived 4-5% of attacks. However, the distribution of
ASesattacked doeshave a long tail. The ASesshown
in Figure8 accountedfor 35% of all attacks,yet these

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 30 31 32 34 35 37 38 39 40 41 42 44 45 46 48

Attacks

%
 V

ic
ti

m
s

Figure 9: Histogramcountingthe numberof victims of re-
peatedattacksacrossall traces.

ASescorrespondto only 3%of all ASesattacked.About
4% of attackseachweekhadno routeaccordingto our
offline snapshotof globalroutes.

Comparedwith TLDs, ASesexperiencedmorevaria-
tion in the numberof attackstargetedat themfor each
week. In otherwords,thereis morestability in thetype
or country of victims than the ASesin which they re-
side. For example,EMBRATEL’s percentageof attacks
variesby morethana factorof 2, andAS 15662,anun-
namedAS in Yugoslavia, did not show up in week1 of
thetraces.

6.3.4 Victims of repeatedattacks

Figure 9 shows a histogramof victims of repeatedat-
tacksfor all tracescombined.The valueson the x-axis
correspondto thenumberof attacksto thesamevictim in
thetraceperiod,andthevalueson they-axisshow what
percentageof victims wereattacked a given numberof
timesin logarithmicscale.For example,themajority of
victims (65%)wereattackedonly once,andmany of the
remainingvictims (18%) wereattacked twice. Overall,

most victims (95%) were attacked five or fewer times.
For theremainingvictims, mostwereattacked lessthan
adozentimes,althoughahandfulof hostswereattacked
quiteoften. In thetraceperiod,onehostwasattacked48
timesfor durationsbetween72 secondsand5 hours(at
timessimultaneously).Thegraphis alsotruncated:there
are5 outlier victims attacked 60–70times,andoneun-
fortunatevictim attacked102timesin a oneweekspan.

6.4 Validation

Thebackscatterhypothesisstatesthatunsolicitedpackets
representresponsesto spoofedattacktraffic. This theory,
which is at the coreof our approach,is difficult to vali-
datebeyond all doubt. However, we can increaseour
confidencesignificantly throughcarefulexaminationof
thedataandvia relatedexperiments.

First, an importantobservation from Table 3 is that
roughly80%of attacksand98%of packetsareattributed
to backscatterthatdoesnotitself provokearesponse(e.g.
TCP RST, ICMP Host Unreachable). Consequently,
thesepacketscould not have beenusedfor probingour
monitorednetwork; thereforenetwork probing is not a
goodalternativeexplanationfor this traffic.

Next, we wereableto duplicatea portionof our anal-
ysisusingdataprovidedby VernPaxsontakenfrom sev-
eralUniversity-relatednetworks in NorthernCalifornia.
Thisnew datasetcoversthesameperiod,but only detects
TCP backscatterwith the SYN andACK flagsset. The
addressspacemonitoredwasalsomuchsmaller, consist-
ing of three/16 networks(

�"�!�! � " ’s of thetotal IP address
space).For 98% of the victim IP addressesrecordedin
this smallerdataset,we find a correspondingrecordat
the sametime in our largerdataset.We canthink of no
othermechanismotherthanbackscatterthatcanexplain
sucha closelevel of correspondence.

Finally, AstaNetworksprovideduswith datadescrib-
ing denial-of-serviceattacksdirectly detectedat mon-
itors covering a large backbonenetwork. While their
approachand ours capturedifferent setsof attacks(in
part due ingressfiltering asdiscussedin Section3 and
in partdueto limited peeringin themonitorednetwork),
their dataqualitatively confirmsour own; in particular
we wereableto matchseveral attacksthey directly ob-
servedwith contemporaneousrecordsin our backscatter
database.

7 Relatedwork

While denial-of-servicehaslong beenrecognizedas a
problem [14, 18], there has beenlimited researchon
the topic. Most of the existing work can be roughly
categorized as being focusedon tolerance,diagnosis
and localization. The first category is composedof

bothapproachesfor mitigatingtheimpactof specificat-
tacks[4, 16] andgeneralsystemmechanisms[25, 1] for
controllingresourceusageon thevictim machine.Usu-
ally suchsolutionsinvolveaquick triageondatapackets
sominimal work is spenton the attacker’s requestsand
thevictim cantoleratemorepotentattacksbeforefailing.
Thesesolutions,asembodiedin operatingsystems,fire-
walls, switchesandrouters,representthedominantcur-
rent industrial solution for addressingdenial-of-service
attacks.

Thesecondareaof research,akin to traditionalintru-
sion detection,is about techniquesand algorithmsfor
automaticallydetectingattacksas they occur [22, 13].
Thesetechniquesgenerallyinvolve monitoringlinks in-
cidentto the victim andanalyzingpatternsin the arriv-
ing anddepartingtraffic to determineif anattackhasoc-
curred.

Thefinal categoryof work, focuseson identifying the
source(s)of DoSattacksin thepresenceof IP spoofing.
Thebestknown andmostwidely deployedof thesepro-
posalsis so-calledingressand egressfiltering [12, 5].
Thesetechniques,which differ mainly in whetherthey
aremanuallyor automaticallyconfigured,causerouters
to droppacketswith sourceaddressesthatarenotusedby
thecustomerconnectedto thereceiving interface.Given
the practicaldifficulty of ensuringthat all networks are
filtered,otherwork hasfocusedon developingtoolsand
mechanismsfor tracingflowsof packetsthroughthenet-
work independentof their ostensiblyclaimedsourcead-
dress[3, 26, 23, 2, 24, 11].

Thereis adearthof researchconcernedwith quantify-
ing attackswithin theInternet– denial-of-serviceor oth-
erwise.Probablythebestknown prior work is Howard’s
PhD thesis– a longitudinal study of incident reports
received by the ComputerEmergency ResponseTeam
(CERT) from 1989to 1995[15]. Sincethen,CERT has
starteda new project,calledAIR-CERT, to automatethe
collectionof intrusiondetectiondatafrom a numberof
differentorganizations,but unfortunatelytheirresultsare
not yet available[7]. To our knowledgeoursis theonly
quantitative andempiricalstudyof wide-areadenial-of-
serviceattacksto date.

8 Conclusions

In this paper we have presenteda new technique,
“backscatteranalysis,” for estimatingdenial-of-service
attackactivity in the Internet. Using this technique,we
have observed widespreadDoS attacksin the Internet,
distributedamongmany differentdomainsandISPs.The
size and length of the attackswe observe are heavy-
tailed,with asmallnumberof longattacksconstitutinga
significantfraction of the overall attackvolume. More-
over, we seea surprisingnumberof attacksdirectedat

a few foreigncountries,at homemachines,andtowards
particularInternetservices.

Acknowledgments

Wewould like to thankanumberof peoplefor theircon-
tributionsto this project. We areparticularlygratefulto
Brian Kantor andJim Maddenof UCSD who provided
accessto key network resourcesand helpedus under-
standthe local network topology. kc claffy andColleen
Shannonat CAIDA providedsupportandvaluablefeed-
backthroughouttheproject.David WetherallandGretta
BartelsatAstaNetworksdonatedtheir time,dataandin-
sight.VernPaxsonof ACIRI alsoprovidedvaluabledata
andfeedbackat several stagesof our thinking. Finally,
we thankthe anonymousreviewersfor their comments
and suggestions.Supportfor this work was provided
by DARPA NGI ContractN66001-98-2-8922,NSFgrant
NCR-9711092,andAstaNetworks.

References

[1] Gaurav Banga,PeterDruschel,andJeffrey Mogul.
ResourceContainers:A New Facility for Resource
Managementin ServerSystems.In Proceedingsof
the 1999USENIX/ACM Symposiumon Operating
SystemDesignand Implementation, pages45–58,
February1999.

[2] Steven M. Bellovin. ICMP TracebackMessages.
InternetDraft: draft-bellovin-itrace-00.txt,March
2000.

[3] Hal BurchandBill Cheswick.TracingAnonymous
Packetsto Their ApproximateSource.In Proceed-
ings of the 2000USENIXLISA Conference, pages
319–327,New Orleans,LA, December2000.

[4] Cisco Systems. ConfiguringTCP Intercept(Pre-
ventDenial-of-ServiceAttacks). CiscoIOS Docu-
mentation,December1997.

[5] CiscoSystems.UnicastReversePathForwarding.
CiscoIOSDocumentation,May 1999.

[6] ComputerEmergency ResponseTeam.CERT Ad-
visory CA-1996-21TCP SYN Flooding Attacks.
http://www.cert.org/advisories/
CA-1996-21.html, September1996.

[7] ComputerEmergency ResponseTeam. AirCERT.
http://www.cert.org/kb/aircert/,
2000.

[8] ComputerSecurityInstituteandFederalBureauof
Investigation.2000CSI/FBI ComputerCrimeand

SecuritySurvey. ComputerSecurityInstitutepub-
lication,March2000.

[9] R. D’Agostino andM. Stephens.Goodness-of-Fit
Techniques. MarcelDekker, Inc., 1986.

[10] Tina DarmohrayandRossOliver. Hot SparesFor
DoSAttacks. ;login:, 25(7),July 2000.

[11] Drew Dean,Matt Franklin,andAdamStubblefield.
An AlgebraicApproachto IP Traceback.In Pro-
ceedingsof the2001NetworkandDistributedSys-
temSecuritySymposium, SanDiego,CA, February
2001.

[12] P. FergusonandD. Senie. Network IngressFilter-
ing: DefeatingDenial of ServiceAttacks Which
Employ IP SourceAddressSpoofing. RFC 2827,
May 2000.

[13] Mark Fullmer andSteve Romig. The OSU Flow-
toolsPackageandCiscoNetflow logs. In Proceed-
ings of the 2000 USENIXLISA Conference, New
Orleans,LA, December2000.

[14] Virgil Gilgor. A Note on the Denial-of-Service
Problem.In Proceedingsof the1983IEEESympo-
siumon SecurityandPrivacy, Oakland,CA, 1983.

[15] JohnD. Howard. AnAnalysisof SecurityIncidents
on theInternet. PhDthesis,Carnegie Mellon Uni-
versity, August1998.

[16] Phil KarnandWilliam Simpson.Photuris:Session-
Key ManagementProtocol. RFC 2522, March
1999.

[17] David Moore, Ram Periakaruppan,Jim Dono-
hoe, and kc claffy. Where in the World is net-
geo.caida.org? In INET 2000Proceedings, June
2000.

[18] Roger Needham. Denial of Service: An Exam-
ple. Communicationsof the ACM, 37(11):42–47,
November1994.

[19] V. Paxson,G. Almes,J. Mahdavi, andM. Mathis.
RFC2330:Framework for IP performancemetrics,
May 1998.

[20] Vern Paxson. PersonalCommunication,January
2001.

[21] JonPostel,Editor. InternetControlMessageProto-
col. RFC792,September1981.

[22] Steve Romig and SureshRamachandran. Cisco
Flow Logs and Intrusion Detection at the Ohio
Stateuniversity. login; magazine, pages23–26,
September1999.

[23] StefanSavage,David Wetherall,AnnaKarlin, and
Tom Anderson. PracticalNetwork Supportfor IP
Traceback.In Proceedingsof the2000ACM SIG-
COMM Conference, pages295–306,Stockholm,
Sweden,August2000.

[24] Dawn SongandAdrian Perrig. AdvancedandAu-
thenticatedMarking Schemesfor IP Traceback.In
Proceedingsof the2001IEEE INFOCOMConfer-
ence, Anchorage,AK, April 2001.

[25] Oliver SpatscheckandLarry Peterson.Defending
Against Denial of ServiceAttacks in Scout. In
Proceedingsof the1999USENIX/ACM Symposium
on Operating SystemDesignand Implementation,
pages59–72,February1999.

[26] RobertStone. CenterTrack: An IP Overlay Net-
work for TrackingDoSFloods. In Proceedingsof
the2000USENIXSecuritySymposium, pages199–
212,Denver, CO,July2000.

	Netzwerktests
	Teardrop DoS 1998
	Kosten?

	Welchen Aspekt?
	Welcher Layer?
	Welcher Stack?
	Wir bekommen ein Tripel
	Was ist mit Layern 1, 2 und 7?

	Teardrop DoS 1998
	Was hätte hier helfen können?
	Empirix ANVL
	Packetanalyzer

	Referenzwerte
	Performance
	Netz
	Client und Server

	Ausblick
	Quellen #1
	Quellen #2
	acterna.com
	TECHNICAL RESOURCES
	Network Applications: Are They Performing? Part 1
	http://www.acterna.com/downloads/white_papers/telecom_and_datacom/netapps1_wp.pdf
	Network Applications: Are They Performing? Part 2
	http://www.acterna.com/downloads/white_papers/telecom_and_datacom/netapps2_wp.pdf

	pe.net
	James Bond Meets The 7 Layer OSI Model
	James Bond Meets The 7 Layer OSI Model

	www.iu.hio.no
	TCP/IP security

	63.105.33.158
	teardrop.c DoS

	empirix.com
	ANVL

	utexas.edu
	Notes on Texas Instruments Processors

	ietf.org
	http://www.ietf.org/rfc/rfc0760.txt

	lex-con.com
	Protocol Stacks in Relationship to the OSI Model

	caida.org
	Inferring Internet Denial-of-Service Activity - CAIDA : OUTREACH : papers : 2001 : BackScatter
	http://www.caida.org/outreach/papers/2001/BackScatter/usenixsecurity01.pdf

	GBCPCJAHHDCGJANEIAIMLGNENPMAOKKF:
	form1:
	x:
	f1: [Select a Region]

	form2:
	x:
	f1: [Select a Network]

	form3:
	x:
	f1: 2
	f2:
	f3: internet
	f4: internet
	f5: url:com/about_us url:com/careers url:com/customer_care url:com/downloads url:com/products url:com/services url:com/technical_resources url:com/training

	f6:

	form4:
	x:
	f1: poster_atmpl.txt
	f2: webmaster@wwgsolutions.com
	f3: poster_error.html
	f4: poster_mtmpl.txt
	f5: firstname,lastname,company,address1,city,state,postalcode,country,email
	f6: firstname,lastname,company,address1,city,state,postalcode,country,email
	f7: poster_success.html
	f8: email
	f9: mailto

	OBNJFHJJAJDOKMOIIGGLBFMBFIKKGAAP:
	form1:
	x:
	f1: [Select a Region]

	form2:
	x:
	f1: [Select a Network]

	form3:
	x:
	f1: 2
	f2:
	f3: internet
	f4: internet
	f5: url:com/about_us url:com/careers url:com/customer_care url:com/downloads url:com/products url:com/services url:com/technical_resources url:com/training

	f6:

	ENNOMAOPFNNDHHPICECIFOCGPALONCNG:
	form1:
	x:
	f1: [Select a Region]

	form2:
	x:
	f1: [Select a Network]

	form3:
	x:
	f1: 2
	f2:
	f3: internet
	f4: internet
	f5: url:com/about_us url:com/careers url:com/customer_care url:com/downloads url:com/products url:com/services url:com/technical_resources url:com/training

	f6:

	DLJAOOOBFONKLENMBMBLFBCCHFACJAPD:
	form1:
	x:
	f1: [1]
	f2:

	f3:

