
A Distributed Cooperative
Event Data Recorder
for Networked Vehicles

Diplomarbeit

Berlin, June 21st, 2005

Horst Rechner

Department of Information and Cognition Sciences
Wilhelm-Schickard-Institute for Computer Science
Eberhard Karls University of Tübingen
Sand 13
D-72076 Tübingen

Betreuer: Prof. Dr. Georg Carle
Assistierender Betreuer: Dipl.-Inf. Andreas Klenk

Hiermit versichere ich, diese Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben.

Berlin, den 21. Juni 2005

Horst Rechner

Abstract
This thesis describes the design, proof-of-concept implementation,
analysis and validation of an event data recorder working in a vehicular
ad-hoc networking environment. With this application being a new idea to
utilize the capabilities of event data recorders in ad-hoc networks, possible
improvements by the merging of these technologies are outlined.
The ad-hoc network enabling distributed recording poses new questions con-
cerning the event signaling and data synchronization between multiple net-
work nodes (vehicles) which are addressed. The design and implementation
of a prototype realizing these functions are central part of this work.
Since event data recorders operate in a special domain with respect to data
availability and timing accuracy, a validation of the prototype against the
IEEE Standard for Motor Vehicle Event Data Recorders is conducted. Fi-
nally the performance and accuracy of the prototype operating in a live
environment involving two vehicles equipped with an ad-hoc platform is
analyzed.

Contents

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Objective and Scope . 1
1.2 Outline . 1
1.3 Fundamental terms . 2

2 Analysis of EDR technology 4
2.1 History of Data Recorders . 4
2.2 Current Technology . 5

2.2.1 Crash Relevant Data . 5
2.2.2 Storage . 6
2.2.3 Data Extraction . 6
2.2.4 The IEEE Standard for Motor Vehicle Event Data Recorder

(EDR)s . 7
2.3 Limitations of Current Technology 7

2.3.1 Trigger Event . 7
2.3.2 Location of Sensors . 7
2.3.3 Data Loss . 9
2.3.4 Synchronization of EDR Logs 9

2.4 Improvements Achieved by the Use of Ad-hoc Networks 9
2.4.1 Additional Sensory and Network Data 9
2.4.2 Time Synchronization . 10
2.4.3 Distributed Storage . 10
2.4.4 Usage Scenarios . 11

3 Design 16
3.1 Extended Triggering Mechanism 16
3.2 Platform Architecture . 18

3.2.1 Hardware . 19
3.2.2 Network Architecture and Routing 19
3.2.3 Middleware Components 20

3.3 EDR Components . 24
3.3.1 Manager . 24
3.3.2 Adaptor . 25
3.3.3 Server . 27

i

3.3.4 DC-EDR States . 27

4 Implementation details 31
4.1 Measuring Method . 31
4.2 Data Format and Serialization 32
4.3 Post-crash analysis . 33
4.4 Optimizations . 33

5 Validation of the Prototype 36
5.1 Basic Operation . 36

5.1.1 Test setup . 36
5.1.2 Results . 37

5.2 Operation under Load . 40
5.2.1 Test setup . 40
5.2.2 Results . 40

5.3 Data Availability and Resolution Compared to the IEEE Standard 41
5.3.1 Data Elements for Light Vehicles 42
5.3.2 Comparison with Prototype 42

5.4 Synchronization of Logs . 49
5.4.1 Dry Run . 51
5.4.2 Test Run . 51
5.4.3 Test Run with Increased Load 53
5.4.4 Possible Error Sources . 54

5.5 Image Capturing . 55
5.5.1 Test Setup . 55
5.5.2 Results . 55
5.5.3 Optimizations . 57

6 Conclusions and Outlook 60

Appendices 62

A DC-EDR Graphs 62

B Time Difference Data Sets 64

References 74

ii

List of Figures

2.1 OnStar System: mode of operation 8
2.2 Multiple perspectives: pre-crash situation 13
2.3 Multiple perspectives: crash situation 13
2.4 Multiple perspectives: post-crash situation 13
2.5 Infrastructure information: pre-crash situation 14
2.6 Infrastructure information: crash situation 14
2.7 Data log transmission: crash situation 15
2.8 Data log transmission: post-crash situation 15

3.1 Crash trigger sent out to start event data recording on other cars 16
3.2 Schematic timeline of trigger communication in the event of a crash 17
3.3 Mainboard with interfaced components 19
3.4 Beacon packets sent out by the FleetNet router 20
3.5 The core components of the middleware 22
3.6 Example of a PropertyObject and its acoompanying PropertyIn-

foObject . 23
3.7 Data flow from the adaptors to the ring buffer 26
3.8 Dump thread lagging behind the recording thread 27
3.9 Data flow in a crash event . 28
3.10 Operating states of the EDR . 29
3.11 Crash notification cycle and PO wrapping 30

4.1 DatedObject: A wrapper for timing information 32
4.2 Post-crash analysis tool screenshot 34
4.3 Interthread messaging and recording states 35

5.1 Basic operation: recorded events on vehicle B 38
5.2 Basic operation: recorded events on vehicle A 39
5.3 recording time stamp deltas for car.engine.rpm.current (all samples) 46
5.4 recording time stamp deltas for car.engine.rpm.current (samples

1558-1719 . 47
5.5 recording time stamp deltas for car.speed.current 48
5.6 recording time stamp deltas for car.neighborhood.current 48
5.7 Image capturing test setup schema 56
5.8 Image capturing test results . 56

A.1 Torque / speed graph . 62
A.2 Torque / RPM graph . 63
A.3 Speed / lateral acceleration graph 63

iii

List of Tables

3.1 Routing table entries of vehicle A 20

5.1 Basic operation: Summary of events 37
5.2 Operation under load results . 41
5.3 Required data elements defined by the IEEE standard 43
5.4 Optional elements defined by the IEEE standard 44
5.5 Availability of properties in the test platform middleware 45
5.6 Availability of properties in the E200 middleware 50
5.7 Recommended data formats for the required IEEE Standard data

elements . 58

B.1 Calculation of Distributed Cooperative Event Data Recorder (DC-
EDR) trigger time difference during dry run in section 5.4 64

B.2 Calculation of system time difference during dry run in section 5.4 65
B.3 Calculation of EDR trigger time difference during first test run

in section 5.4 . 66
B.4 Calculation of system time difference during first test run in sec-

tion 5.4 . 67
B.5 Calculation of EDR trigger time difference during test run with

increased load in section 5.4 . 69
B.6 Calculation of system time difference during test run with in-

creased load in section 5.4 . 71

iv

Chapter 1

Introduction

With event data recorders and ad-hoc networks being two separate technology
domains, this work analyzes the possibilities of their integration to achieve a
new operational scope for event data recording.

1.1 Objective and Scope

The objective of this thesis is to show that the integration of an EDR into an
ad-hoc network can be achieved and to what extent since EDRs operate under
special conditions with respect to timing accuracy and data rates. The IEEE
Standard for Motor Vehicle Event Data Recorders will serve as a leveling staff
for these attributes.

Paying attention to the above mentioned aspects, the design and implemen-
tation of a working prototype and the detailed analysis of its operation will be
a result of this work. The operational environment has to be mastered as well
as the preparation and conduction of test runs involving two vehicles provided
for these tests.

Since this thesis also has to answer the question if a Distributed Cooperative
Event Data Recorder (DC-EDR) can be implemented as a software component
integrated with future vehicular communication systems, requirements regard-
ing performance and timing accuracy are imposed on the prototype implemen-
tation.

Finally a tool for post-crash analysis has to be provided to allow the display
of the data collected during the operation of the DC-EDR in a graphical and
textual manner.

1.2 Outline

Chapter 2 gives an overview of current EDR technology and describes the lim-
itations of current implementations as well as possible improvements achieved
by merging ad-hoc networks and EDRs. These improvements will be illustrated
at the end of this chapter by a number of scenarios. This leads to the design of
a device realising these aspects, the DC-EDR.

The chapter 3 is about the design of the DC-EDR and introduces the ex-
tended trigger as a main concept of the DC-EDR. Because the design is based

1

2

on an existing platform, the architecture of this platform is outlined before the
different components of the DC-EDR are described.

With a design in place, chapter 4 will go into some details of the implemen-
tation which were important for a software system operating with millisecond
accuracy. Without providing every detail, central aspects about the implemen-
tation like the data format, post-crash analysis method and system optimiza-
tions are discussed.

The validation of the DC-EDR in chapter 5 tests the operation of the pro-
totype in several test runs in a lab environment (dra run) and a vehicular en-
vironment (test run). Timing and recording accuracy are two aspects that are
addressed in depth in this chapter.

The last chapter concludes the work, summarizes the test results and gives
an outlook to future prospects.

1.3 Fundamental terms

Event Data Recorders

EDRs, sometimes referred to as ”black boxes” have been used in various trans-
portation modes like aircrafts, trains or cars for a number of years. The main
unit continuously records data that is collected by a number of sensors inside
the transportation and saves it for analysis after a possible accident.

With the evolution of available sensor data and storage capabilities the EDRs
recorded more data enhancing the possibilities of post-crash analysis up to the
point where video and audio data was included into the recording.

Nowadays the automatic transmission of this data using cellular networks is
available for automotive application.

Vehicular Ad-hoc Networks

An ad-hoc network is a form of network that is comprised of a set of nodes which
are connected by some form of network link. The nodes are establishing these
links on their own, which makes them independent of a centralized structure.
With network links forming and changing arbitrarily and every node only having
a limited transmission range (one-hop neighborhood), each node has to act as
a router for information sent to other nodes (multi-hop neighborhood).

Sensor networks are one application of ad-hoc networks with the goal to
miniaturize the nodes forming the network. The nodes themselves are equipped
with sensors that provide information for other members of the ad-hoc network.

Vehicular ad-hoc networks have two specialties:

• the nodes are mobile

• the links are wireless

A node in a Vehicular Ad-hoc Network (VANET) is changing its geographic
position with higher speed compared to other mobile ad-hoc networks. This has
the effect that the link topology of the network is changing very rapidly.

The applications for VANETs are mainly safety applications, communication
and informational services which are based on the additional sensor information

1.3. FUNDAMENTAL TERMS 3

available through the network. For an overview of a real life VANET implemen-
tation and possible applications, see [CEF02].

Chapter 2

Analysis of EDR technology

2.1 History of Data Recorders

The first practical flight recorder was introduced in 1953 which used a styli
to produce oscillographic markings on a tin foil. These recorders were being
made mandatory in airplanes1 since 1957. Since then flight recorders improved
their recording capabilities and new recording parameters were made manda-
tory for certain aircraft types (see [Gro99] for details) by the Federal Aviation
Administration.

• 1967: voice recording

• 1988: digital recording

The purpose of current recorders range from crash analysis to maintenance
trouble-shooting.

The first airbags appeared in vehicles in the 1970’s. To improve the quality
of the airbag deployment algorithms, car companies began to integrate data
recording devices into the airbag electronics to allow the collection of real world
data. The National Highway Transport Safety Agency (NHTSA) realized the
need for automatic crash data collection and equipped a fleet of 1000 vehicles
in the early 1970’s with analog recording devices.

It was not until the 1990’s when car manufacturers began integrating devices
into their products by default that recorded data mainly for the deployment of
occupant protection systems. Since then the usage of this data was possible
to crash investigators. However, retrieval and analysis was restricted to car
manufacturers because of the proprietary storage and data formats used.

In 1994 General Motors Corporation (GMC) replaced their airbag control
module with a device they called Sensing and Diagnostic Module (SDM) and
which was the first Original Equipment Manufacturer (OEM) installed EDR
which allowed the measuring of longitudinal acceleration rates of the vehicle.
Three years later the Ford Motor Company equipped their products with a
similar device (Restraint Control Module (RCM)) with which it was possible to
record acceleration rates, along with airbag deployment, seat-belt pretensioner
and seat position data.

1with a weight of over 5700 kilograms that operate above 7600 meters

4

2.2. CURRENT TECHNOLOGY 5

The primary purpose of these early measuring devices wasn’t to provide data
in the event of a crash for means of accident reconstruction, but to collect data
to improve the algorithms for passive safety systems. EDRs thus can be seen
as a byproduct of the airbag industry.

In 1999 GMC rolled out an improved version of their SDM, which now
recorded about 5 seconds of pre-crash data in a ring-buffer, including auxiliary
data like vehicle speed, engine Revolutions Per Minute (RPM), engine throttle
opening and service brake application. In the event of a crash this ring-buffer
was frozen and data is preserved for post-crash analysis.

In the same year GMC licensed their data model to the Vetronix Corpora-
tion, which allowed the creation of a third party crash data retrieval and analysis
software. The CDR System [CDR] allows the analysis of crash data without the
consultation of the car manufacturers.

This improved crash reconstruction capabilities dramatically by easing the
means by which to recover crash data from the vehicle.

In Europe Siemens VDO Automotive developed a EDR called Unfalldaten-
speicher (UDS), which is meanwhile in it’s second iteration. The UDS records
acceleration rates, current speed, brake application, engine throttle opening,
turn indicator and other sensory data. Currently about 40 000 vehicles are
equipped with this type of EDR worldwide.

2.2 Current Technology

2.2.1 Crash Relevant Data

EDRs are used to record sensory data that describes the state of a vehicle before,
during and after a crash.

This data includes internal sensory data [JHB98] such as

• longitudinal and lateral acceleration rates (which are also used for airbag
deployment algorithms) 2

• speed

• positional data (Global Positioning System (GPS) data)

• car related parameters (temperature, oil pressure, brake fluid status)

• driver related car operating parameters (brake, light and seat belt status)

and external sensory data such as

• audio and video information [MPB98, Bag99, Ray99]

• electronic IDs of vehicles in the vicinity [Sza88, CGTW99]

• other external sensory information (temperature, road condition)

While internal data describes the state of the car itself and information about
the driver, external data captures information about the vicinity of the car.

2to reduce the amount of data acceleration is often represented by low frequency velocity
change samples ∆v

6

2.2.2 Storage

The collected information is stored on non-volatile memory in a tamper-proof
fashion to allow post-crash analysis. The storage device is housed in a fire-proof
shock-absorbing box that is placed in a statistically safe place inside the car.

In order to allow crash reconstruction the recorded data has to cover pre-
and post-crash time. This is achieved through a ring buffer constantly recording
data, even if no crash is indicated. After a certain amount of time, the earliest
recorded data is overwritten by the most recent data. In the event of a crash
(or near-accident, such as sharp breaking) the logging stops thus preserving a
certain amount of pre-crash data. In case of the UDS 2.0 from Siemens VDO
Automotive the collected data consists of

• 30 seconds of pre-crash data

• 15 seconds of post-crash data

The MACBox from Altius Solutions [Alt] and the DriveCam from DriveCam
Video Systems [Dri] record 20 seconds of acceleration data (10 pre-crash and 10
post-crash). Other systems have different recording times. Since the sampling
rate of the main signals (acceleration, speed) in a crash situation is between 100
and 1000 Hz, the latter being the sampling rate recommended by the NHTSA
[CHR98] and the IEEE Standard for EDRs [IEE04], the recording time of com-
mercially available recorders is below one minute. Other signals (turn signal)
will be recorded when they occur.
The number of total captured events can be greater than one. In case of the
UDS 2.0 a maximum of 12 events (accidents or manually triggered record-
ings) can be stored. The storage devices are mainly Programmable Read-Only
Memory (PROM)s like flash memory or Electrically-Erasable Programmable
Read-Only Memory (EEPROM)s. A typical SDM from GMC holds about 0.5
kilobytes of data [CHMS99].

2.2.3 Data Extraction

Data can be extracted from the EDR in the following ways

• extraction and analysis of the actual memory chip (passive)

• via cable, connected directly to the event data recorder (passive)

• via wireless link (active or passive)

Passive extraction methods require the intervention of a person, whereas
active wireless transmission (in most cases a GSM connection, see [MPB98],
[Sch01] and [OnS]) are initiated by the EDR. They allow the automatic trans-
mission of crash relevant data to a central database without the interaction of
a person. Since crashes put a lot of stress on these devices, telematic services
such as wireless data extraction can not be guaranteed. This is why most EDRs
implement more than one extraction method.

2.3. LIMITATIONS OF CURRENT TECHNOLOGY 7

2.2.4 The IEEE Standard for Motor Vehicle EDRs

In February 2005 the IEEE Standard for Motor Vehicle Event Data Recorders
(MVEDRs) [IEE04] was released providing a guideline for all aspects mentioned
so far in this chapter. With most of the manufacturers using a proprietary data
format the central part of this standard is a data dictionary which describes a list
of 86 data elements in detail, providing recording requirements such as accuracy,
sampling rate and resolution as well as recommendations for the storage format.
Several details from this standard will be used throughout this thesis and will
be explained when they are topical.

2.3 Limitations of Current Technology

The following limitations are based on the fact that traditional EDRs do not
communicate their state to the surrounding infrastructure at crash time. The
communication methods used are post-crash centered and focus on the dis-
patching of emergency vehicles like in the OnStar System from General Motors
[OnS]. This system uses a cellular network connection to contact the OnStar
Call Center about the crash and transmits sensory data from GMCs own SDM
and additional impact sensors located in the vehicle. The main aspect to keep
in mind being that the cellular connection is established as recently as after the
crash. Figure 2.1 taken from the OnStar website shows the chronology of this
process.

2.3.1 Trigger Event

Even if all cars in an arbitrary scenario are equipped with an intact EDR, only
the ones directly involved in the crash would permanently store data to it. This
is due to the limitation of the trigger event used to freeze the cyclic EDR data
buffer. This trigger event is restricted to local sensory data (the same data or
a superset of the data that is stored to it) to determine if a crash occurred. In
most cases the variables in this trigger are traversal and longitudinal acceleration
rates.

If one of them exceeds a defined threshold (2 gs3 in case of the SDM), a
algorithm decides if the data should be frozen and further actions like airbag
deployment should be carried out. This threshold might also be exceeded by
sharp breaking4, but the algorithm will distinguish this event from a crash.
Another form to determine a crash is to install shock sensors in the bumpers
and doors of the car which, upon impact, send a trigger event to the connected
EDR. The EDRs in cars, which are in the vicinity of the crash, but do not
experience any of these defined triggers do not store any data. The only addi-
tional information is gathered from traditional crash reconstruction techniques.
See the Haddon Matrix in [Hai01] for an overview of these techniques.

2.3.2 Location of Sensors

All sensors that are feeding data into the EDR including the ones that determine
if the data should be permanently stored, are located at the vehicle thus limiting

3acceleration due to gravity with a standard value of gn = 9, 80665 m
s2

4normal breaking rarely exceeds ±1g for more than a few milliseconds

8

Figure 2.1: OnStar System: mode of operation

2.4. IMPROVEMENTS ACHIEVED BY THE USE OF AD-HOC
NETWORKS 9

the scope of the collected data. It is impossible, for instance, to get a view of
the accident from an uninvolved non-human observer if it is not captured by
traffic-cameras. Such additional data could help to reconstruct a more complete
picture of the crash situation in post-crash analysis e.g. in the event of a mass
collision.

Additionally, the events that trigger the EDR could be gathered from a
remote location such as a traffic light or another vehicle involved in a crash.

2.3.3 Data Loss

Another problem intrinsic to the centralized nature of EDRs is data loss. If the
data store is damaged in the crash and cannot be accessed during post-crash
analysis, the reconstruction of the crash is limited to traditional crash recon-
struction techniques like thread-mark analysis. If the data could be distributed
before the EDR is severly damaged the information could also be gathered from
the receivers of this data.

2.3.4 Synchronization of EDR Logs

Inherent to the restriction of triggers to the direct sensors connected to the EDR
is, that data logs from multiple EDRs can only be synchronized if the vehicles
carrying them were in direct relationship to each other during the event (e.g. in
a rear-end collision). In this case, an acceleration registered in one vehicle also
registers as an opposite acceleration in the other one. If this condition is not
met, it is difficult to synchronize more than one data log by time and establish
a linear timeline for the data collected from multiple EDRs. Even if the EDRs
store the time of an internal clock in the log files it cannot be made sure that
these clocks have recently been synchronized to a central time service.

Time synchronization could help in the reconstruction of multi-car accidents.

2.4 Improvements Achieved by the Use of Ad-
hoc Networks

With the involvement of a vehicular ad-hoc network we can relax these limita-
tions by introducing a trigger which is broadcasted by the crashed car to the cars
in its vicinity. Subsequently the data stored by the crashed car is transmitted
to them.

2.4.1 Additional Sensory and Network Data

By means of the broadcasted crash trigger which acts as a secondary trigger for
the EDR, data is also captured by cars outside the immediate vicinity of the
crash. This data can improve crash reconstruction through additional environ-
mental data. This aspect gains special importance if video data is included in
the EDR logs, since every camera can only capture a limited angle of the overall
picture.

With the additional data it is possible to perform plausibility checks to see
if the data from one car can be supported by the data recorded by cars in the
vicinity presuming that they received the trigger event.

10

Besides the additional sensory information, the network itself continuously
transmits data. The safety applications for instance generate warning and in-
formational messages which can be used to determine if the driver was warned
about possible problems ahead (weather condition, road condition, traffic-jam
warnings) and acted appropriately (turning on fog tail lamp, slowing down,
etc.).

The surrounding infrastructure might also generate information which is of
importance to the accident (e.g. the state of traffic lights, information from
ramp management and traffic management systems).

The recording of this data would allow reconstruction of the network state
as well as the analysis of the behavior of applications. In this case, the EDR
would serve as a network probe.

2.4.2 Time Synchronization

Since we deal with a distributed system, the problem of log synchronization
across different instances of the EDR can be achieved with respect to the re-
quired accuracy using the ad-hoc communication network.

Even though the internal clocks of the systems on which the EDR is running
might be synchronized using Network Time Protocol (NTP) or GPS, we cannot
rely on them being in perfect sync during the time of a crash. This is the case,
if e.g.

• the vehicle has not been in contact of a acNTP time server for synchro-
nization

• the vehicle has been parked in a location without GPS availability, like a
garage.

In the event of a crash instant synchronization has to be achieved along
with the transmission of crash data. Since NTP and GPS rely on a significant
amount of connection time to their master time sources (being a central time
server or a satellite) before the clocks are synchronized, they are not ideal in
this application domain.

The method introduced in chapter 3 is used to achieve log file synchronization
through simple difference time measurement even if the absolute time (which
nevertheless will also be recorded) is off by an unknown amount. This informa-
tion is sent along with the actual crash trigger, which will serve as a global sync
event for the different data recorder logs. Since the links in a VANET change
rapidly, the combination of synchronization information along with EDR data
in one packet guarantees the integrity of the data.

The goal is to achieve millisecond accuracy for log synchronization.
Other methods for time synchronization can be found in [EGE02] and [ER03].

2.4.3 Distributed Storage

EDRs located in vehicles outside the hazard zone that receive the data of the
crashed car are comparably safe against the physical effects of the crash, there-
fore providing an appropriate storage of crash data.

Another safety aspect concerns the manipulation of data. Since the data is
now stored on multiple vehicles, manipulation of the data is even more difficult.

2.4. IMPROVEMENTS ACHIEVED BY THE USE OF AD-HOC
NETWORKS 11

The manipulation of the data of one EDR might not be sufficient, because the
data would no longer correlate with the data stored on the other vehicles. A
scenario that anticipates the altering of all existing data of a crash is feasible,
but reminds of the ”Murder on the Orient Express”, where all involved drivers
of the vehicles would change the data together.

2.4.4 Usage Scenarios

The following scenarios will motivate different aspects of distributed cooperative
EDRs.

Multiple Perspectives

This scenario will focus on the recording of video data by a passing car to allow
an overview of the crash situation.

The pedestrian in figure 2.2 is crossing the road and is not seen by the driver
of the car. A crash occurs and the car is sending out a trigger that is received
by the passing car. The passing car is saving the crash data (including video
information).

The benefit of this additional data is, that the video camera is recording the
crash site from a different angle, allowing an overview of the site which can e.g.
be sent along with an emergency call to paramedics to get a first impression of
the situation they will encounter. This scenario is simulated with the prototype
of the DC-EDR in chapter 5.

Infrastructure and Network Information

With the DC-EDR being able to query additional information from surrounding
infrastructure integrated into the network (e.g. traffic lights) this information
can also be incorporated into the logs. The following scenario illustrates the
advantage to crash analysis if such information would be included.

A typical intersection situation is shown in figures 2.5 and 2.6: One car is
waiting on a red light while another car is approaching the intersection. The
driver of the approaching car is accelerating the vehicle instead of decelerating
when the green light turned to yellow, therefore risking a crash with the waiting
car. The Active Safety (AS) system in his car is also fed by the information from
the traffic lights advising him to decelerate to come to a stop at the intersection.

After the crash the DC-EDRs of both cars stored local sensory data along
with information from the traffic lights. In addition, information from the ac-
tive safety system was stored inside the DC-EDRs allowing the post-crash re-
construction of warning messages issued to the driver. In this case the speeding
driver has no chance to wind himself out, because the DC-EDR log shows that

• the AS system reported the traffic light change in time

• the driver accelerated during the approach of the intersection

• the state of the traffic lights was saved pre-crash, showing that the driver
ran a red light.

12

Transmission of Log Data

In case of a severe crash with the risk of data loss the immediate transmission
of data through the VANET could save it from destruction. In scenario 2.7 the
passing car receives the data from the DC-EDR of the crashed car, which is com-
promised after the crash, thereby preserving it from destruction by subsequent
events of the crash.

2.4. IMPROVEMENTS ACHIEVED BY THE USE OF AD-HOC
NETWORKS 13

LOG LOG

Figure 2.2: Multiple perspectives: pre-crash situation

cr
as

h tr
igger

LOG

Figure 2.3: Multiple perspectives: crash situation

LOG

Figure 2.4: Multiple perspectives: post-crash situation

14

LOG

st
ate information

state information

!

Figure 2.5: Infrastructure information: pre-crash situation

state information

st

ate information

LOG

LOG

Figure 2.6: Infrastructure information: crash situation

2.4. IMPROVEMENTS ACHIEVED BY THE USE OF AD-HOC
NETWORKS 15

LOG

LOG

Figure 2.7: Data log transmission: crash situation

LOG

Figure 2.8: Data log transmission: post-crash situation

Chapter 3

Design

This chapter describes the triggering mechanism enabling the distributed coop-
erative operation of the DC-EDR and the method used to synchronize multiple
logs. With the components of the DC-EDR being integrated into an existing
platform architecture, the layout of this platform is outlined before going into
details of the design of the DC-EDR itself.

3.1 Extended Triggering Mechanism

The main concept of the DC-EDR is an extended triggering mechanism. The
primary trigger will still be fired by a car directly involved in an accident or
near-accident through traditional data analysis of locally collected data (e.g.
acceleration rates). Furthermore the DC-EDR sends out a crash trigger to
other cars, which triggers secondary event data recording on vehicles receiving
this trigger. The ring buffer of these cars will be frozen, like they were directly
involved in the accident. These cars can be seen as ”remote sensors” of the
directly involved cars.

cr
ash

 trig
ger

LOG

LOG

LOG

Figure 3.1: Crash trigger sent out to start event data recording on other cars

16

3.1. EXTENDED TRIGGERING MECHANISM 17

This thesis will focus on the broadcast of a crash beacon during the event of
a crash. In general the broadcast is not limited to crash related events.

With multiple logs describing one event, we have to correlate the logs to allow
a correct ordering of the events on a linear timeline. Therefore a synchronization
mechanism for the different log files has to be designed providing millisecond
accuracy.

Time Difference Method

Figure 3.2 shows the schematic flow of the communication between two instances
of DC-EDRs in the event of a crash. Every marker carries a timestamp which
allows the calculation of time differences for each of the timestamps on the local
instance in respect to a previous timestamp.

Instance I

Instance II

Crash Trigger
sent

Trigger
received

Acknowledge
sent

Acknowledge
received

t

I,1

t,2t,1 II,1

I,2

Figure 3.2: Schematic timeline of trigger communication in the event of a crash

Instance I generates a crash trigger and broadcasts it to Instance II, which
in its turn extracts the senders address, saves the data of the local DC-EDR to
non-volatile memory and returns an acknowledge packet to the sender.

The timeline on Instance I of the car is divided into the following parts:

• δI,1 represents the time between the generation of the the crash event and
the time the trigger was actually sent to the network

• δI,2 represents the time the car has to wait for an acknowledge of the
triggering of the remote DC-EDR

During the wait period δI,2 the crash trigger is transmitted by the commu-
nication infrastructure of the system, processed by Instance II of the DC-EDR
and the acknowledge is sent back.

• δII,1 represents the time between the reception of the trigger and the
transmission of the acknowledge packet

The only intervals that do not register in any of the timestamps (and the
ones we are interested in) are the transmission times δt,1 and δt,2 of the packet.
This includes the passage of the data through the IP-stack of the systems and
the actual radio transmission delay from instance I to instance II and back.

18

As can be seen in figure 3.2 we have a correlation between the two timelines
with

• δI,2 = δt,1 + δII,1 + δt,2

With the assumption that we encounter similar conditions regarding the
computing and networking environment on each Instance of the DC-EDR we
have a symmetric and quasi stationary problem, since transmission times are
much smaller than changes to vehicle and network state.

• 2 ∗ δt ≈ δt,1 + δt,2

If we combine the two formulas, we get

• δt ≈ δt,1+δt,2
2 = δI,2−δII,1

2

Therefore the difference of the two logs δI,II can be computed in the following
manner:

• δI,II = δI,1 + δt ≈ δt,1+δt,2
2 = δI,1 + δI,2−δII,1

2

With δI,II being the offset from crash registration on instance I (the crashed
car) to instance II (the car receiving the trigger) we can simple subtract δI,II

from the time when the trigger was received on instance II to synchronize the
log files.

This method will be evaluated in section 5.4 using the prototype of the
DC-EDR.

If this method can be used for two instances of data recorders an iteration
for three or more instances can be done in a similar fashion. If instance I is
only sending the trigger to its one-hop neighbors the method can be used as is.
In the case of a store and forward transmission through multiple instances of
DC-EDRs, the difference times δI,II have to be added up to compensate for the
introduced delay added by every step in the transmission chain.

This method reminds of ping. So why not use ping to measure the de-
lay between two instances of the DC-EDR? One reason was that ICMP was
compromised in the ad-hoc protocol making ping times unreliable. The second
reason was that the implemented method should measure the actual difference
in crash trigger registration times between two DC-EDRs (on OSI/ISO layer 7)
and not the run-time of a packet in the underlying network stack (on OSI/ISO
layer 3) which would be much smaller.

3.2 Platform Architecture

The DC-EDR is based on an existing ad-hoc network infrastructure developed
in the Bundesministerium für Bildung und Forschung (BMBF) FleetNet project
[Fle] during 09/2000 and 12/2003. Part of this infrastructure are two test ve-
hicles which are equipped with special hard- and software components enabling
ad-hoc network operation. They were provided by the Fraunhofer Institut für
offene Kommunikationssysteme (FOKUS) and used during the test runs in chap-
ter 5. In the following section the components of the test vehicles important for
this work are outlined.

3.2. PLATFORM ARCHITECTURE 19

3.2.1 Hardware

Each of the vehicles is equipped with a low-power VIA C3 Nexcom board which
runs a Red Hat Linux distribution. The board is connected with several car
systems like the navigation system or webcams over standard issue interfaces.
Diagram 3.3 show the hardware components and their interfacing methods.

Network interface

Local sensors

User input

Mainboard
Camera

Camera
CameraUSB

KeyboardMini-DIN-6 (PS2)

VGA / RS232

Navigation SystemRS232

IEEE 802.11

Communication
controller

PC104 (~ISA) CAN busSerial connection

Touchscreen
Monitor

PC Card Interface

Figure 3.3: Mainboard with interfaced components

The Controller Area Network (CAN) bus interface is based on Philips SJA
1000, Intel 82527 and Siemens/Infinion 81C91 controller chips, for which a Linux
driver was implemented. It delivers the CAN data via IP packets1 to the system.
The navigation system is a Blaupunkt TravelPilot DX-N and the cameras are
standard USB webcams.

3.2.2 Network Architecture and Routing

The ad-hoc network was used as-is. The component important for this work is
the router which was developed by University of Mannheim and NEC Network
Labs Europe. The DC-EDR uses the standard IP interface provided by the
FleetNet network layer.

The router provides an interface to the ad-hoc routing table describing the
current state of the network neighborhood. The following information about
network nodes in the vicinity can be obtained:

1to provide compatibility to a former implementation using a dedicated embedded con-
troller connected via a 802.3 interface for data delivery.

20

• ID (which resolves to an IP address)

• Geographic location

• Direct one-hop relationship

• Validity

This information is accumulated through beacons broadcasted by every node
in a fixed interval. In case of the FleetNet router the beacon is sent every 3
seconds.

Vehicle C

Vehicle B

Vehicle A

Vehicle B

Vehicle D

Vehicle DVehicle C

Figure 3.4: Beacon packets sent out by the FleetNet router

In figure 3.4 vehicle A had direct contact with vehicles C and D at some
point t0. Now we look at t1 = t0 + tb, with tb being the beacon interval.

The routing table of vehicle A holds the following entries:

Vehicle Direct relationship Validity
B 1 1
C 0 1
D 0 0

Table 3.1: Routing table entries of vehicle A

The beacon packet of vehicle B was received by vehicle A putting it in direct
(one-hop) relationship with vehicle A. The beacon of vehicle C on the other hand
was not received since t0 therefore making it a valid but not directly addressable
neighbor of vehicle A. Vehicle D was not seen for t � tb making it unlikely to
come into contact with vehicle A again. The entry is simply stored to provide
information of the network topology to the routing protocol.

3.2.3 Middleware Components

The middleware provides an API for applications to access interfaced compo-
nents in a standardized way. In case of the FleetNet middleware these compo-
nents are real hardware like the CAN bus or the navigation system as well as
software like the FleetNet router.

3.2. PLATFORM ARCHITECTURE 21

The central component of the middleware is the event bus. This bus inte-
grates different manager components which provide persistence functions and
regulate the flow of data to and from the bus thereby adding additional func-
tionality to the raw event bus. The hardware components are connected via
Adaptors (similar to device driver functions) whereas Servers provide an in-
terface to the outside world. Figure 3.5 gives an overview of the components.
The middleware is also called InCarMiddleware.

Managers

The managers along with the PropertyBroker make up the intelligent event
bus. They provide functions for persistence and for handling data objects trav-
elling the bus. These objects are called Properties and define the standard
data format used throughout the system.

The PropertyBroker receives changes of PropertyObjects and keeps track
of their current value while providing notification events for components that
have registered themselves for property changes. Every component of the mid-
dleware interfaces either directly (trusted components) or indirectly via an ac-
cess control component (untrusted components) with the PropertyBroker. In
addition the broker provides functions to describe the retrieved Properties.
The event bus is implemented as an optimized hash table with handles.

Two other components of the event bus are ManagerNonVolatiles and
ManagerPersistence. These two managers are used upon initialization of the
middleware. With the vehicle having certain fixed attributes like e.g. its di-
mensions or chassis number ManagerNonVolatiles restores these values into
the middleware.

After initialization of the fixed attributes the ManagerPersistence restores
the last known state of non-static attributes into the middleware. The dif-
ference between these two types of variables is that an updated value of a
persistent variable will be saved upon shutdown of the middleware by the
ManagerPersistence back to the file system while non-volatiles will not. Vari-
ables that qualify for this category are e.g. the current position of the car or
the mileage of the car.

ManagerAccess provides access control filters for the Server components.
Clients connecting to a Server register themselves with their current security
level. With every Property in the PropertyBroker being associated with dis-
tinct permissions for every security level, the ManagerAccess filters out data
not cleared for operations of that specific client. In its current implementation
four security levels are defined which have non-inclusive permission settings2.

• World is the default access group

• Trusted is reserved for local or remote clients with a trusted status

• Owner access is given to the owner of the car.

• Manufacturer access.

Every group defines distinct access permissions for read and write operations
and the visibility of every Property to members of the group.

2comparable to the unix file permission scheme

22

Intelligent
Event Bus

Persistence
Manager

Property
Broker

CAN
Adaptor

Speech
Adaptor

Property
Server

Property
Object

Property
Object

Property
Object

Property
Object

Property
Object

Property
Object

Access
Manager

Non-volatile
Manager

Property
Object

Property
Object

Property
Object

File System

Property
Data

Property
Data

Figure 3.5: The core components of the middleware

3.2. PLATFORM ARCHITECTURE 23

Properties and Naming Scheme

As mentioned before all data traveling the event bus is encapsulated in Properties.
These properties hold name, value and attributes of all information provided by
the Managers, Adaptors and Servers of the system. Every Property is divided
into two objects:

The PropertyObject (PO) holds the current value of the Property, whereas
the PropertyInfoObject (PIO) provides descriptive information about the Property.
The following example illustrates this for one PropertyObject provided by the
CAN bus Adaptor for car.speed.current:

+PropertyInfoObject()
+set()
+get()

-name : String = car.speed.current
-description : String = indicates the current speed of the vehicle
-defaultPrefix : String = no prefix
-defaultPostfix : String = km/h
-flags : Integer = 0

PropertyInfoObject

+PropertyObject()
+set()
+get()

-value : Object = 135
-prefix : String
-postfix : String = km/h

PropertyObject

1 1

Figure 3.6: Example of a PropertyObject and its acoompanying PropertyIn-
foObject

The information provided by the PO only makes sense when combined with
its PIO which provides the semantics for the value held by the PO. In addition to
that, the PIO defines the access permissions for that Property. This separation
is necessary since the PropertyBroker has to handle a high volume of Property
value changes which should have the least possible performance impact.

The properties are organized into a tree structure. The used naming scheme
has the following top level elements:

Root Usage and example
service.* Holds information about the Servers

e.g. service.edr.description, service.edr.port
adaptor.* Holds information about the Adaptors

e.g. adaptor.edr.state.current
car.* Holds information about the car,

the car environment, passengers and payload
e.g. car.passenger.max,
car.navigation.position.current.longitude

Adaptors

Adaptors serve as an abstraction layer for hardware components or software
subsystems. They have unrestricted bidirectional access to the event bus as
they implement interfaces to trusted components such as the CAN bus or the
navigation system.

The CANAdaptor implements the interface to one or more CAN busses of
the vehicle. All information produced by CAN connected components such as
the body electronics (e.g. turn signal) are pushed onto the event bus by this

24

Adaptor. With all Adaptors providing bidirectional access to their attached
hardware, it would be possible to write data to the CAN bus. In contrast
to the CANAdaptor which mostly pushes information onto the event bus, the
AdaptorSpeech queries information for voice output. The basic idea is that it
listens to certain PropertyObjects on the event bus and reports them via a
text-to-speech subsystem to the driver of the vehicle.

Another important Adaptor is the AdaptorFleetNet which interfaces to
the router and translates information about the vicinity of the car (see section
3.2.2).

Servers

Servers are used to enable communication with remote clients. Since the access
level of a client accessing a specific Server can vary, each Server is accessed
through the ManagerAccess.

The PropertyServer is a perfect example to illustrate a typical Server
behavior.
When a remote client is interested in the current state of the vehicle it registers
itself to the PropertyServer service and subscribes to certain Properties to
receive updates on a value change. When the Property value changes, the
PropertyServer pushes the new value to the registered clients. The role of
ManagerAccess is clear in this scenario since specific information has to be
restricted to certain groups. The world group for example should not be able to
access the place of departure or travel destination provided by the navigation
system of the vehicle, whereas this information could be anonymously queried
by traffic management systems which might be members of the trusted group.

3.3 EDR Components

With the middleware being the central hub for all information from the various
car subsystems one requirement of the work was to integrate the prototype of
the DC-EDR into the existing middleware, therefore the architecture of the
DC-EDR follows the categories laied out in the previous chapter.

3.3.1 Manager

The first component that gets called upon initialization of the DC-EDR is the
EDRManager. Its purpose is to enumerate the properties for which recording
will be enabled. For this purpose the PIO format has been extended by an
DC-EDR flag which is read by the manager. The advantage of integrating this
information directly into the PIOs is, that every component introducing a new
Property to the middleware can decide whether it should be recorded by the
DC-EDR upon crash or not. This mechanism enables the automatic recording of
new information without the need to change the configuration of the DC-EDR.

After the information, which POs to record is gathered, the manager hands
over the control to the EDRAdaptor.

3.3. EDR COMPONENTS 25

3.3.2 Adaptor

The EDRAdaptor implements the main functionality of the DC-EDR. This in-
cludes the ring buffer and the local and remote crash notification of the DC-
EDR.

Ring Buffer

The ring buffer is the central component of the DC-EDR. Its purpose is to
continually store data into a volatile buffer that will be dumped upon a crash
event into non-volatile storage. This ring can easily be simulated by a linear
datastructure with a pointer advancing with time and being reset to position 0
when the maximum recording time has been reached. That way the last x sec-
onds of data are preserved since the earliest recorded data is always overwritten
by the most recent one. This continual recording is started upon instantiation
of the EDRAdaptor and kept up until the shutdown of the middleware.

Figure 3.7 shows the schematic flow of data from the source to the ring
buffer.

The EDRAdaptor registers a listener for every event that was identified by
the EDRManager for recording by the DC-EDR. When an Adaptor pushes a new
PO onto the event bus, the PropertyBroker notifies all subscribed listeners of
that change including the EDRAdaptor. The Adaptor retrieves the PO, creates a
new DatedObject (DO) wrapper and stores the PO inside. The wrapper object
is used to hold timing information about the data. Then the DO gets pushed
into a queue. While new data is being stored in one queue the second queue
is being copied into the ring buffer. This mechanism allows decoupling of the
event bus from the ring buffer.

Data Dump

When a crash event is detected by the EDRAdaptor the current available data
(ring buffer and video data) is copied to non-volatile memory.

The recording of events takes place until a predetermined time after the crash
(post-crash time). Therefore the dump thread will begin saving pre-crash data.
When he reaches the position of the recording thread it has to lag behind this
thread which deferrs the completion of the dump until the post-crash recording
time has been reached. A schema of the dump thread time-lag can be seen in
figure 3.8.

In addition to the data from the ring buffer, video data from the webcams is
stored on non-volatile memory. The video buffer is implemented as an external
software component and is not an integral part of the DC-EDR.

Figure 3.9 shows the schematic flow of information when a crash is signaled
to the middleware by putting the PO car.edr.event with the value ”crash”
on the event bus. A dump signal is sent to the ring and video buffers and a
remote notification is sent out to all available DC-EDRs in the current one-hoc
neighborhood provided by the FleetNet router.

Remote Notification

The network component of the DC-EDR consists of two functional parts: sender
and receiver. The sender is attached to the EDRAdaptor and transmits a trig-

26

R
ing B

uffer

D
ated

O
bject

D
ated

O
bject

P
roperty
B

roker
C

A
N

A

daptor
P

roperty
D

ata

G
P

S

A
daptor
P

roperty
D

ata

A
daptor

P
roperty
D

ata

Property
O

bject

Property
O

bject

Property
O

bject

ED
R

A

daptor
D

ated
O

bject

Property
O

bject

Q
ueue II

D
ated

O
bject

D
ated

O
bject

Q
ueue I

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

Property
O

bject
D

ated
O

bject
D

ated
O

bject
D

ated
O

bject
D

ated
O

bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

t

F
igure

3.7:
D

ata
flow

from
the

adaptors
to

the
ring

buffer

3.3. EDR COMPONENTS 27

Timeline
Dated
Object

Dated
Object

Dated
Object

Dated
Object

Dated
Object

Dated
Object

Dumping
position

Recording
position

Crash

Pre-crash time Post-crash time

Figure 3.8: Dump thread lagging behind the recording thread

ger to remote DC-EDRs when a local crash condition is met. The receiver is
implemented as a Server component and will be outlined in the next section.

For the sender to know the state of the current ad-hoc neighborhood it
queries the middleware for the latest router information. The retrieved table
(see figure 3.1) indicates if a node is currently in the one-hop neighborhood of
the vehicle. If this is the case, that node is notified of the crash.

3.3.3 Server

The receiving side of the DC-EDR is located inside the EDRServer. This compo-
nent was separated from the EDRAdaptor because it provides an open connection
to the VANET therefore allowing attacks from malicious nodes. Access to the
PropertyBroker through this Server is restricted by the ManagerAccess.

The EDRServer waits for crash triggers sent from remote DC-EDRs. When
a trigger is received it is sent to the local event bus. From here on the remote
trigger behaves like a local trigger firing up the crash cycle of the local DC-EDR.
In addition, an acknowledge is sent back to the originating vehicle notifying it
of the reception of the trigger and the storage of the data.

Crash trigger and acknowledge packet are wrapped in DOs that provide
local timing information. Upon arrival on the other side they are wrapped
into DOs once again. This process is important, because it enables the log
synchronization outlined at the beginning of this chapter. In addition in allows
the mutual identification of the vehicles involved in the transaction, since the
DOs hold information about their point of origin. In figure 3.11 a complete
notification cycle is shown along with the wrapping process.

After the acknowledge from the remote DC-EDR is received we have two
synchronizable logs on the local and remote vehicles.

3.3.4 DC-EDR States

The DC-EDR cycles through different states during its operation. Each state
defines the activity of certain components of the system.

During initialization of the system the EDRManager determines the variables
to be recorded and prepares this information for the EDRAdaptor which gets
initialized when the manager gives the read signal to the middleware. The
recording state is the normal operation state for the system. In this state data
is continually recorded into the ring buffer.

28

dum
p

dum
p

P
roperty
B

roker

A
daptor

ED
R

A

daptor

N
on-volatile M

em
ory

R
em

ote E
D

R
 S

erver

V
ideo B

uffer D
ata

R
ing B

uffer D
ata

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

car.edr.
event

car.edr.
event

car.edr.
event

notify

R
ing B

uffer

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

D
ated

O
bject

V
ideo B

uffer

F
igure

3.9:
D

ata
flow

in
a

crash
event

3.3. EDR COMPONENTS 29

initializing recording shutdown

dumping and recording dumping

ready shutdown

crash

post-crash
recording finished

dump complete

Figure 3.10: Operating states of the EDR

When a crash trigger is detected a state change to dumping and recording is
issued which starts up the DumpThread to store the contents of the ring buffer
into non-volatile memory with the recording thread still running. When the
recording has reached the defined post-crash recording time the state is advanced
to dumping and the recording thread is put into queuing mode, which stores
new data from the Adaptors into temporary memory and leaves the ring buffer
untouched. The dump thread finishes storing the data, and the recording thread
is put back into normal operations mode. This returns the whole system back
to its normal operation state recording.

30

V
ehicle B

V
ehicle A

E
D

R
 A

daptor

Tim
e

V
ehicle B

E
D

R
S

erver

P
roperty
B

roker
ED

R
S

erver
P

roperty
B

roker
ED

R
 Adaptor

crash

Tim
e

V
ehicle A

crash

Tim
e

Vehicle A

crash

Tim
e

Vehicle A

crash

Tim
e

V
ehicle B

ack

Tim
e

Vehicle B

ack

Tim
e

V
ehicle A

crash

Tim
e

V
ehicle B

ack

N
etw

ork

F
igure

3.11:
C

rash
notification

cycle
and

P
O

w
rapping

Chapter 4

Implementation details

This chapter will not dive into every detail of the implementation, but highlight
some features which were crucial to the implementation of a system operating
under millisecond timing requirements. The DC-EDR was completely written
in Java1, because it had to be integrated into the module structure laied out by
the middleware.

Despite running on a non-realtime Linux Operating System (OS) the timing
requirements for an EDR had to be adhered and measured. The first section will
focus on the measurement method used throughout the system. The additional
timer data had to be stored in a new container, which is introduced in the next
section. Following the storage method and post-crash analysis tool for these
objects. The final section talks about optimizations of the code.

4.1 Measuring Method

To provide a millisecond accuracy the measuring method had to be more ac-
curate than that. The use of System.currentTimeMillis() did not prove
suitable because of its low granularity. The test machines running the Windows
OS achieved only an average accuracy of 15 ms, while the test machines with
Linux OS (including the OSs on the test vehicles) achieved an average accuracy
of 1 ms.

In the first tests conducted with high frequency data this timer returned 0
as the time difference between 2 samples with a sampling rate above 1 kHz.

Nevertheless this timer also called unix or system timer2 can be used to
provide an absolute marker for the DC-EDR log files. It has to be noted, that
the system time may be inaccurate if not synchronized with a central time
server, but can provide a ”macro” identification of crash events (hour and date
of the event).

The approach used for sub-millisecond measurement is based on a Java
method inside the sun.misc.Perf package of Java 1.4.x. It allow the query
of the Timestampcounter (TSC)3 ticks which provide a much higher granular-

1currently Java Standard Edition Version 1.4.x.
2and delivers the time difference in milliseconds between the current time and January 1,

1970
3depending on the platform other available timers will be queried

31

32

ity than the system time. The TSC provides the current ticks of the CPU,
which, divided by the frequency, gets us a microsecond accurate timer, called
high resolution timer in the following chapters.

Since the Java implementation was not officially documented, it was tested
against a C implementation using the standard Windows API functions
QueryPerformanceFrequency and QueryPerformanceCounter (JNI developed
by Vladimir Roubtsov [Rou]), which proved the granularity of 1 µs.

The downside of this high resolution timer was that it did not provide an
absolute marker, since it is started upon instantiation of the Java virtual ma-
chine.

Since the method for log synchronization only required difference times, the
two timers simply were combined, by associating them with every PO that
was put inside the ring buffer of the DC-EDR. This provided an absolute but
inaccurate time stamp and relative but accurate time information for every PO.

For further details about accuracy of timers, see [Sti05] and [PB05].

4.2 Data Format and Serialization

In the current implementation of the middleware the POs used throughout the
system do not provide any timing information about the data included in them,
therefore a wrapper had to be implemented to host the POs as well as the
system time and high resolution time (see figure 4.1 for details).

+DatedObject()
+get()
+set()

-source : String
-javaTicks : Long
-ticksPerSecond : Long
-unixTime : Long
-PropertyObject : PropertyObject

DatedObject

+PropertyObject()
+set()
+get()

-value : Object = 135
-prefix : String
-postfix : String = km/h

PropertyObject

1 1

Figure 4.1: DatedObject: A wrapper for timing information

The ticksPerSecond holds the frequency of the current high resolution
timer, with which the javaTicks are divided to get a timestamp which is now
based on microseconds rather than ticks.

With the DC-EDR receiving remote crash notifications from other vehicles
the origin of the message had to be differentiated. This is the purpose of the
field source which, in the current implementation simply stores the IP address
of the entity which sends information to the DC-EDR. In case of the DC-EDR
operating in standalone mode with no vehicles in the vicinity, it is the local IP
address.

These DOs are serialized upon a crash notification to the local hard drive
using the XML codec provided by the standard Java API. The XML format

4.3. POST-CRASH ANALYSIS 33

was chosen because of the simple customization of the serialized data format
(see [Mil] for details), and because of the good readability of the raw data logs.
The following XML fragment would represent the DO from figure 4.1.

1 <object class="de.gmd.fokus.vehicle.DatedEventTicks">

2 <string>car.speed.current</string>

3 <void property="source">

4 <string>192.168.17.1</string>

5 </void>

6 <void property="javaTicks">

7 <long>112913442</long>

8 </void>

9 <void property="ticksPerSecond">

10 <long>1000000</long>

11 </void>

12 <void property="unixTime">

13 <long>1117616370636000</long>

14 </void>

15 <object class="de.gmd.fokus.vehicle.PropertyObject">

16 <double>135</double>

17 <void property="postfix">

18 <string>km/h</string>

19 </void>

20 </object>

21 </object>

Listing 4.1: PropertyInfoObject serialized as XML

4.3 Post-crash analysis

With the data being stored in log files they can now be retrieved and analyzed
post-crash. To simplify the analysis of the data whose XML representation often
exceeded several megabytes during one test run, a tool was written that parses
the serialized DOs and sorts them by property name and time of occurrence.
The data is then displayed graphically4 as well as in a spreadsheet for detailed
analysis.

This tool (see figure 4.2 for a screenshot) was also used to analyze the data
for the validation of the prototype.

4.4 Optimizations

The ring buffer being the core component of the DC-EDR had to be opti-
mized for processing speed since it should be able to store PO with a sus-
tainable data rate of 1.5 new objects per millisecond. For this reason an
java.util.ArrayList was used which provides fast insert times and has na-
tive support for conversion into an array of static length for further processing.
For details about the performance of different Java collection types see [Eck02]
chapter 11.

4with the use of the Ptplot package [Ptp]

34

Figure 4.2: Post-crash analysis tool screenshot

The two queues (figure 3.7) are used to decouple the queuing of incoming
events from the deposit into the ring buffer. The ”bucket” metaphor is suited
to describe this method. While the first bucket gets filled with incoming data
the second one is emptied into the ring buffer. After a specified time the roles
are reversed and the now empty second bucket takes place of the first one. Thus
a bucket holds all events occurring within a given time window.

This method provides an additional buffer if the dumping of events is de-
ferred. Due to performance and handling considerations the data structure used
for the ring buffer is an array of fixed length. With the two queues having a
defined fill time we can instantiate the array upon initialization of the Adaptor
and leave it untouched during the whole runtime of the DC-EDR. The only
variable is the length of the queues which varies depending on the event bus
traffic and number of subscribed POs.

Additionally, during normal operation of the DC-EDR no instantiation of
new objects or deep copies are made until absolutely necessary. This is the case
twice:

• when a PO scheduled for recording is generated, a new DO is instantiated

• when one queue is emptied into the ring buffer

Since the deep copy of a queue into the ring buffer might block the normal
operation of the DC-EDR considerably this step is sourced out into a seperate
thread called RecordingThread. The dumping of the ring buffer upon crash
notification is handled by the DumpThread and the storage of the video buffer
by the CamThread. Currently the video buffer is an external component which
receives a notification from the ring buffer and saves the current image from the
front webcam to the local hard drive.

4.4. OPTIMIZATIONS 35

Recalling the different operating states of the DC-EDR we already said that
they define the activity of a certain component of the system. Figure 4.3 maps
the main operating states to thread activity while providing an overview of
interthread messaging.

recording
state

dumping
state

dumping and
recording
state

recording
state

put_PO

EDR
Adaptor

Ring
Buffer

Push
Thread

Recording
Thread

switch_buckets
bucket_switched

crash

Dump
Thread

dump_data
post_crash_recording

finished
finished

send_trigger

save_image

Cam
Thread

put_PO

finished

Figure 4.3: Interthread messaging and recording states

During the recording state POs are put into the ring buffer and the queues
are regularly switched after a fixed amout of time. When a crash occurs, the
ring buffer simply issues a couple of commands to the supporting threads and
returns to his task of buffering new incoming POs from the EDRAdaptor. The
PushThread is used to send the crash trigger to the nodes in the one-hop neigh-
borhood. When the threads have finished their tasks, they report back to the
ring buffer. This concludes a crash cycle and returns the DC-EDR to its normal
recording state.

Chapter 5

Validation of the Prototype

The validation of the prototype will test different aspects of the implementation.
First the basic operation of the DC-EDR will be checked to guarantee the

most basic functions like recording of data and trigger transmission. After that
several tests focusing on different timing aspects will be made. Special attention
is given to the conformance towards the IEEE Standard requiring a certain res-
olution and sampling rate from the recorded data. Since the DC-EDR operates
in a distributed environment a series of tests shall prove the synchronizabil-
ity of log files recorded by multiple vehicles during a crash. The chapter will
be concluded by an operational test of the image capturing capabilities of the
DC-EDR.

The preparation of the test runs proved to be very time consuming, since
the complete middleware had to be deployed and functionally tested on both
vehicles before test data could be gathered. The preparation of the vehicles and
the test runs sometimes took several days to complete, since the middleware
and deployment method itself was a prototype developed during the FleetNet
project.

In each test case the systems (vehicles or workstations) were based on the
middleware and DC-EDR described in chapter 3.

To simulate crashes a custom Adaptor was written to generate crash triggers
during the test runs. This Adaptor called DataGenAdaptor was implemented
as part of the middleware and connects as a standard Adaptor to the event
bus. The implementation is basically an array of timers that push different POs
into the PropertyBroker in a preset interval thereby generating regular event
patterns. The most important of these POs being the property car.edr.event
which is used to signal a crash event.

5.1 Basic Operation

5.1.1 Test setup

The following data was recorded during a test run with 2 vehicles. Vehicle A
had a static position (parked in a garage) while vehicle B was parked in a remote
location with no radio contact to vehicle A. Vehicle B generated crash triggers
in one minute intervals using the DataGenAdaptor.

36

5.1. BASIC OPERATION 37

Then vehicle B was driven towards vehicle A and parked beside it. During
the approach of vehicle B radio contact was established and the following crash
trigger activated the dumping of the DC-EDR log of vehicle A.

The operation parameters of the DC-EDR were changed in this test run to
allow long term recording, with crash triggers being sent out every 60 seconds.
The network link was provided by a standard 802.11a interface card with a fixed
transmission rate of 2 Megabit (Mbit)/s to avoid link rate renegotiation delays
during the test. This data rate was used during all vehicle based tests conducted
in this chapter.

5.1.2 Results

In the red segment of graphs 5.1 and 5.2 the vehicles had no radio contact. In
the green segment they had established radio contact and the routers had an
entry of the opposite vehicle in their routing table.

The timelines in both graphs shows the absolute time in seconds counting
from the start of the middleware. Since the middleware was not started on
both vehicles at the same time, the timestamps in both graph and table are not
synchronized across the two vehicles.

The blue graph in 5.1 shows the current speed (car.speed.current) of
vehicle B. The two vertical markers in this graph indicate the time where a
manually generated crash event took place. The events are summarized in table
5.1.

local timestamp (in 109µs) event
vehicle B (moving)

1.50 starting to drive vehicle B
towards vehicle A
(speed > 0)

1.56 crash occurred with no vehicle
registered in router
(marker 1)

1.57 vehicle A registered in routing table
(transition of red to green segment)

1.59 vehicle B was parked
within communication range of vehicle A
(speed = 0)

1.62 crash occurred with radio contact
and acknowledge was received
(marker 2)

vehicle A (parked)
1.93 vehicle B registered in routing table

(transition of red to green segment)
1.95 remote crash was registered

and acknowledge was sent
(marker 2)

Table 5.1: Basic operation: Summary of events

Since the x-axis marks the time from the beginning of the recording to the

38

Figure 5.1: Basic operation: recorded events on vehicle B

5.1. BASIC OPERATION 39

Figure 5.2: Basic operation: recorded events on vehicle A

40

current event in µsec ∗ 109 the events of vehicle B took place between 1500 and
1630 seconds from the beginning of the recording.

Taking marker 2 as a pivot element, the time from the first appearance of
vehicle A in the routing table in vehicle B to the crash is about 53 seconds. This
displays the indeterministic behavior of the FleetNet router. On the opposite
side this time is about 24 seconds. Subsequent tests confirmed this discrepancy
as an effect produced by the router.

To explain the discrepancy, the recorded car.neighborhood.complete prop-
erty comes in handy. This property records the reception of a beacon sent out
by a remote router to announce the vehicle to its neighborhood. The beacons
of vehicle A registered in the DC-EDR of vehicle B and vice versa.

While the router on vehicle A was sending out a beacon every 2.87 seconds
(with a standard deviation of 0.54 seconds) during the whole test run, the router
on vehicle B behaved differently. The time between two beacons transmissions
was, like on vehicle B, about 2.76 seconds, but this standard interval was reg-
ularly broken by intervals with no transmission. These ”silent times” had an
average length of 25.4 seconds. This explains the deferred registration of vehicle
B in the DC-EDR log.

Despite this discrepancy the test run showed the successful basic operation
of the DC-EDR with the limitations introduced by the router. The recording of
the routing table exemplary showed the application of the DC-EDR as a network
probe. The next test will establish if the DC-EDR can handle the amount of
data produced during normal operation in a vehicle.

5.2 Operation under Load

5.2.1 Test setup

To verify if the DC-EDR can handle the amount of data that will be generated
by the Adaptors a dry test was performed using the DataGenAdaptor. Every
10 seconds a new high priority thread generating dummy PropertyObjects was
started until a maximum of 6 threads were running. Every one of these threads
generated 1 sample every 4 milliseconds. With all threads running 1.5 elements
were generated per millisecond. During normal operation the number of data
elements that have to be recorded by an EDR as defined by the IEEE Standard
(see sampling rates in table 5.3) does not exceed this threshold.

This test should answer 2 questions:

• Do all generated PropertyObjects register in the DC-EDR log?

• In what magnitude does the standard deviation of the time stamps increase
when the system is put under stress?

5.2.2 Results

While all generated POs registered in the log, the increase in generated POs
had an impact on accuracy when reaching a threshold of about 0.75 objects
per millisecond. Input / output operations, like the ring buffer being dumped
had an additional negative impact on the accuracy (see table 5.2 for details).
Subsequent runs produced similar results.

5.3. DATA AVAILABILITY AND RESOLUTION COMPARED TO THE
IEEE STANDARD 41

Threads or Mean Standard Deviation
PropertyObjects

4ms (in µs) (in µs)
1 4008 458
2 4028 930
3 4112 5003
4 4162 5862
5 4178 7418
6 4087 2978
6 (with dump) 5187 17966

Table 5.2: Operation under load results

When the number of threads was decreased to 2 after it has reached 6 the
deviation decreased to under 1 ms, with 1 ms being the necessary accuracy for
this kind of device.

The result shows that despite multithreading and several optimizations (see
chapter 4 for details) the architecture does not provide the necessary accuracy
to fulfill the timing requirements outlined by the IEEE Standard if the amount
of data exceeds a threshold of about 0.5 POs per millisecond.

The software architecture cannot provide the necessary accuracy required for
this application domain, therefore either a dedicated software platform fulfilling
real time requirements or a dedicated hardware platform has to be used to
handle high volume data. This is especially true if the crash log includes video
data, which requires the storage of large amounts of data.

5.3 Data Availability and Resolution Compared
to the IEEE Standard

As we have seen in section 2.2.1, traditional event data recorders log a number of
sensory data. The tests in this section will validate if the prototype can record
this data at all and if so, if it can record the data in the necessary resolution and
accuracy set by the IEEE Standard. As we have seen in the previous chapter, the
recording accuracy is influenced by the amount of data that has to be handled.
These results have to be kept in mind when observing the results of this section.

First these elements are listed along with their data boundaries and then
they will be compared against the prototype.

42

5.3.1 Data Elements for Light Vehicles

The following tables are a compilation of the data elements defined by the IEEE
Standard.

Required Elements

The elements in table 5.3 list the data elements required by the IEEE stan-
dard along with their recording interval, resolution, sampling rate and sampling
accuracy.

Additional Elements

The elements listed in Table 5.4 are not required by the standard but if the
vehicle is equipped with measurement methods for these elements, it is rec-
ommended to record them. This table is divided into two sections. The first
section lists the optional elements while the second part presents data elements
which were additionally recorded by the DC-EDR but not optioned by the IEEE
Standard.

5.3.2 Comparison with Prototype

Now that the requirements are established they can be compared against the
data collected in the test runs. This is done for the recommended data ele-
ments and the elements additionally implemented by the DC-EDR. With the
computing environment of the DC-EDR being able to store a multitude of the
recommended recording interval of 13 seconds, this aspect is of minor interest.
As is the data format. Since the format used in the DC-EDR log files is more
elaborate, it can be broken down into the format set by the standard. Special
attention is payed to resolution and sampling rate of the data elements.

Data Elements Available on the Test Platform

Table 5.5 shows the mapping between the required IEEE data elements, their
corrosponding PropertyObject names, the resolution as well as their sam-
pling rates. The CAN sampling rate was taken out of the CAN communica-
tion matrix1 for that vehicle while the measured sampling rate is the average
recorded sampling rate over several test runs with a pool of 2000 samples for
car.engine.rpm.current and accordingly more samples for data with a higher
frequency.

The last three columns of the table are color coded to allow identification of
elements that fulfill the IEEE standard (green) and elements that do not (red).

Unfortunately not all necessary information could be gathered. One impor-
tant property, the longitudinal acceleration is not provided by CAN attached
devices like e.g. the airbag module. On the other hand it must be said that
the CAN communication matrix available for this work did not allow complete
identification of all data on the CAN bus.

1The CAN communication matrix provided by DaimlerChrysler lists detailed information
about the CAN data along with the resolution and sampling rate of every message on the
CAN bus

5.3. DATA AVAILABILITY AND RESOLUTION COMPARED TO THE
IEEE STANDARD 43

D
ata

elem
ent

recording
interval

resolution
m

inim
um

sam
pling

rate
accuracy

A
cceleration

x-axis
(pre

crash)
-8s

to
+

5s
0.048

g
n

a
10

H
z

±
0.01g

n

A
cceleration

x-axis
(crash)

-0.1s
to

+
0.5s

0.048
g

n
1000

H
z

±
0.01g

n

M
axim

um
∆

v
com

puted
0.048

g
n

once
per

event
±

0.01g
n

V
ehicle

indicated
speed

-8s
to

+
5s

1
km

/h
-

±
1k

m
/h

E
ngine

R
P

M
-8s

to
+

5s
0.25

R
P

M
5

H
z

±
1%

E
ngine

throttle
-8s

to
+

5s
0.4%

4
H

z
±

1%
Service

brake
-8s

to
+

5s
on/off

2
H

z
N

/A
Ignition

cycle
at

crash
tim

e
N

/A
N

/A
once

per
cycle

N
/A

Ignition
cycle

at
dow

nload
tim

e
N

/A
N

/A
once

per
cycle

N
/A

D
river

safety
belt

status
-8s

to
+

5s
engaged/disengaged

10
H

z
±

10m
s

A
ir

bag
w

arning
lam

p
-8s

to
+

5s
on/off

N
/A

last
10

counts
(once

for
every

airbag)
A

ir
bag

deploym
ent

level
-8s

to
+

5s
by

m
anufacturer

by
m

anufacturer
±

1m
s

(used
for

m
ulti-state

air
bags)

A
ir

bag
tim

e
to

1-deploy
-8s

to
+

5s
1

m
s

once
per

event
±

1m
s

(if
the

airbag
only

has
1

level
this

denotes
the

tim
e

for
deploym

ent)
E

vent
num

ber
for

m
ulti-events

N
/A

1/2/3
once

per
event

N
/A

T
im

e
betw

een
events

-8
to

+
5s

1
m

s
N

/A
±

1m
s

C
om

plete
file

recorded
N

/A
yes/no

once
per

event
N

/A

T
able

5.3:
R

equired
data

elem
ents

defined
by

the
IE

E
E

standard
a
w

ith
a
ccelera

tio
n

d
u
e

to
g
ra

v
ity

h
a
v
in

g
a

sta
n
d
a
rd

v
a
lu

e
o
f

g
n

=
9
,8

0
6
6
5

ms
2

w
e

g
et

fo
r

0
.0

4
8
g

n
=

0
.4

7
1

ms
2

44
D

ata
elem

ent
recording

interval
resolution

m
inim

um
sam

pling
rate

accuracy
A

cceleration
y-axis

values
equivalent

to
x-axis

acceleration
A

cceleration
z-axis

values
equivalent

to
x-axis

acceleration
V

ehicle
roll

angle
-8s

to
+

5s
10◦

-
±

10◦
A

B
S

activity
-8s

to
+

5s
active/not

active
2

H
z

N
/A

Stability
control

status
-8s

to
+

5s
engaged/not

engaged
2

H
z

±
10m

s
Steering

w
heel

angle
-8s

to
+

5s
1◦

10
H

z
±

1◦
P
assenger

safety
belt

status
-8s

to
+

5s
engaged/disengaged

10
H

z
±

10m
s

A
ir

bag
suppression

sw
itch

status
-8s

to
+

5s
on/off/auto

1
H

z
N

/A
A

ir
bag

tim
e

to
n-deploy

-8s
to

+
5s

1
m

s
once

per
event

±
1m

s
(once

for
every

airbag)
Side

air
bag

tim
e

to
deploy

-8s
to

+
5s

1
m

s
once

per
event

±
1m

s
(once

for
every

airbag)
Side

curtain/tube
air

bag
tim

e
to

deploy
-8s

to
+

5s
1

m
s

once
per

event
±

1
m

s
(once

for
every

airbag)
P

retensioner
deploym

ent,
tim

e
to

fire
-8s

to
+

5s
1

m
s

1000
H

z
±

1
m

s
(for

driver
and

right
front

passenger)
Seat

position
-8s

to
+

5s
1.25

m
m

once
per

event
±

1.25m
m

(for
driver

and
right

front
passenger)

O
ccupant

size
classification

-8s
to

+
5s

by
m

anufacturer
by

m
anufacturer

N
/A

(for
driver

and
right

front
passenger,

records
w

eight
and

size)
O

ccupant
position

classification
(for

driver
and

right
front

passenger,
no

description
found)

G
P

S
longitude

and
latitude

-8s
to

+
5s

0.0001’
1

H
z

±
0.06

′

T
rigger

event
date

-8s
to

+
5s

1
day

once
per

event
±

15
m

in
T
rigger

event
tim

e
-8s

to
+

5s
1

s
once

per
event

±
1

s

T
able

5.4:
O

ptional
elem

ents
defined

by
the

IE
E

E
standard

5.3. DATA AVAILABILITY AND RESOLUTION COMPARED TO THE
IEEE STANDARD 45

D
ata

elem
ent

P
ropertyO

b
ject

nam
e

resolution
sam

pling
rate

C
A

N
average

rate
m

easured
A

cceleration
x-axis

-
-

-
-

M
axim

um
∆

v
-

-
-

-
V

ehicle
indicated

speed
car.speed.current

0.0625
km

/h
100

H
z

21,97
H

z
E

ngine
R

P
M

car.engine.rpm
.current

25
R

P
M

10
H

z
8.7

H
z

E
ngine

throttle
car.engine.torque.pedal

0.4%
100

H
z

36.8
H

z
Service

brake
car.m

anualbrake.current
on/off

50
H

z
0.14

H
z

Ignition
cycle

at
crash

tim
e

-
-

-
-

Ignition
cycle

at
dow

nload
tim

e
-

-
-

-
D

river
safety

belt
status

-
-

-
-

A
ir

bag
w

arning
lam

p
-

-
-

-
(for

every
airbag)

A
ir

bag
deploym

ent
level

-
-

-
-

(used
for

m
ulti-state

air
bags)

A
ir

bag
tim

e
to

1-deploy
-

-
-

-
(if

the
airbag

only
has

1
level

this
denotes

the
tim

e
for

deploym
ent)

E
vent

num
ber

for
m

ulti-events
N

/A
tim

estam
p

once
per

event
T

im
e

betw
een

events
N

/A
1

µs
once

per
event

C
om

plete
file

recorded
N

/A
yes/no

once
per

event
A

cceleration
y-axis

car.acceleration.lateral
0.1

ms
2

100
H

z
33.7

H
z

G
P

S
longitude

and
latitude

car.navigation.position.current.*
0.000001’

N
/A

1
H

z
a

T
rigger

event
date

car.edr.event
1

day
N

/A
N

/A
T
rigger

event
tim

e
car.edr.event

1
m

s
N

/A
N

/A

T
able

5.5:
A

vailability
of

properties
in

the
test

platform
m

iddlew
are

a
th

e
p
o
llin

g
in

terv
a
l
fo

r
th

e
B

la
u
p
u
n
k
t

G
P

S
sy

stem
u
sed

46

With the acceleration rates being the most important data for post-crash
analysis the deployment system has to be equipped with the necessary sensors
that provide a sampling rate high enough to fulfill the standard. If we assume,
that the CAN bus would provide data for longitudinal acceleration with the
same frequency as for lateral acceleration2, the provided sampling frequency of
100 Hz would not suffice anyway.

Though the CAN bus provided a data element named ”crash signal from
airbag” which was recorded and could be used to trigger the DC-EDR.

The sampling rate for car.manualbrake.current was obviously misstated
in the CAN matrix since the value only registered either when the brake was
released, or with the vehicle in motion with a maximum delay of 30 seconds
between each sample.

The measured data rates show that in all of the recorded properties there are
severe discrepancies between the sampling rates provided by the manufacturers
CAN communication matrix and the measured sampling rates. With the sum
of the recorded data being well within the processing threshold determined in
5.2 the middleware should be able to process the average of 0.5 samples per
millisecond without losing any samples.

To determine the source of error, the time difference of two consecutive POs
was examined. The car.engine.rpm.current property should, according to
the CAN communication matrix, deliver a sample every 100 ms whereas the
test results showed an average time difference of 115 ms. Graph 5.3 shows the
measured time differences between two samples n and k with n = k + 1.

Figure 5.3: recording time stamp deltas for car.engine.rpm.current (all samples)

2since the sampling rates of any data on the CAN bus did not exceed 100 Hz, this is most
likely the case

5.3. DATA AVAILABILITY AND RESOLUTION COMPARED TO THE
IEEE STANDARD 47

As we can see, the majority of samples had in fact the promised time dif-
ference of 100 ms to its previous sample. With samples having both positive
and negative variances, the errors can be explained by 2 effects. In graph 5.4
we zoomed in on 161 successive samples of graph 5.3.

Figure 5.4: recording time stamp deltas for car.engine.rpm.current (samples
1558-1719

The first effect can be seen at sample position 26 or 61. Each time one
sample breaks out with a positive deviation several following samples have a
negative deviation with a time difference of nearly 0 in respect to each other.
This is an effect of the middleware buffering queue inside the PropertyBroker
which defers the delivery of events to the EDRAdaptor if the system is under
increased load. When the load has decreased, the broker delivers them with a
high frequency to the EDRAdaptor.

The second effect can not be explained with this queuing mechanism. It
occurs for example at sample position 50, with several samples having a positive
deviation from the mean without their following samples compensating for this
effect. The graphs show that the error occurs in a characteristic pattern, with
samples having a time difference to its predecessor which is a multitude (100ms∗
x with x ≥ 2) of the time difference specified by the manufacturer. This effect
is observed in all properties that are registered through the CANAdaptor, like
the property car.speed.current, which also shows this characteristic pattern.
Since the speed is sampled with 100 Hz the deviation is a multitude of 10 ms. In
contrast, other subsystems like the FleetNet router (see graph 5.6) or navigation
system are delivering samples without these effects.

The operation under load has already been tested previously, and the DC-
EDR did not lose any samples, even under high data load. Therefore the fol-
lowing remaining errors along the pipeline are possible:

• An error occurred on the CAN bus, delaying / dropping the data3

• The device drivers delivering the CAN data to the middleware are drop-
ping messages

3see [CAN05] about details about the CAN bus and protocol.

48

Figure 5.5: recording time stamp deltas for car.speed.current

Figure 5.6: recording time stamp deltas for car.neighborhood.current

5.4. SYNCHRONIZATION OF LOGS 49

It must be noted, that in normal operations mode, two filtering methods
are used to sort out data with similar consecutive values. The purpose of this
mechanism is to reduce the number of POs on the event bus. During the test
runs for this section these two filters were disabled, allowing consecutive POs
with equal values to be sent to the event bus. With no filtering of data happening
in the middleware and underlying drivers, further tests have to be conducted
on the CAN data pipeline outlined in section 3.2.1 starting at the CAN bus
interface. With means of a CAN simulator/tester producing data in controlled
intervals these tests could be conducted, which was out of scope of this thesis.

To sum up the results of this section it can be said that the prototype could
be operated successfully in a live environment with the restriction of the errors
identified in this section. For a production environment these errors have to be
identified using a CAN hardware simulator.

E200

Despite the test runs being made exclusively on the Smart test vehicles table 5.6
was added to show the availability of data elements on the future automotive
development platform of Fraunhofer FOKUS, a Mercedes-Benz E200.

5.4 Synchronization of Logs

For now the focus of our tests was on the standalone operation of the DC-
EDR. Since the main concept of the DC-EDR is its distributed cooperative
operation mode, the following test will focus on the trigger event which enables
the synchronization of multiple log files. The successful distributed recording
was already shown during the basic operation test. To enable a cooperative
mode of operation the log files which are now distributed across multiple vehicles
have to be synchronized to allow the ordering of events in a linear timeline. This
timeline allows the events on one vehicle (e.g. sharp breaking) to be put into
perspective by looking at the data of the surrounding vehicles.

The method for log synchronization introduced in chapter 3.1 was tested
in 2 stages. First the DC-EDR was installed on two workstations connected
with a wired network interface. After successful completion of this test the
implementation was moved onto the vehicles and tested during 2 test runs. To
observe the behavior under an increased data load, the number of recorded POs
was increased during the second test run by adding the recording of the lateral
acceleration to the recorded data set.

In each test run a number of crashes were generated using the DataGenAdaptor.
With no absolute time besides the system time stamps being available on the
target systems, this time had to serve as a leveling rule for evaluating the ac-
curacy of the DC-EDR. Since the system times of the internal clocks could be
off by an undetermined amount of time, the following calculation is necessary
to put the system times into perspective.

Every transmitted crash trigger and acknowledge packet carries two system
time stamps. One from the transmitting instance and one from the receiving
instance of the DC-EDR. The difference of these time stamps δcrash is made up
by two addends:

• The transmission time δI,II

50

D
ata

elem
ent

m
iddlew

are
property

nam
e

resolution
sam

pling
rate

C
A

N
A

cceleration
x-axis

-
-

-
M

axim
um

∆
v

-
-

-
V

ehicle
indicated

speed
car.speed.current

1
km

/h
10

H
z

E
ngine

R
P

M
car.engine.rpm

.current
1

R
P

M
10

H
z

E
ngine

throttle
car.engine.torque.pedal

0.4%
50

H
z

Service
brake

car.m
anualbrake.current

on/off
10

H
z

Ignition
cycle

at
crash

tim
e

-
-

-
Ignition

cycle
at

dow
nload

tim
e

-
-

-
D

river
safety

belt
status

-
-

-
A

ir
bag

w
arning

lam
p

-
-

-
(for

every
airbags)

A
ir

bag
deploym

ent
level

-
-

-
(used

for
m

ulti-state
air

bags)
A

ir
bag

tim
e

to
1-deploy

-
-

-
(if

the
airbag

only
has

1
level

this
denotes

the
tim

e
for

deploym
ent)

E
vent

num
ber

for
m

ulti-events
N

/A
tim

estam
p

once
per

event
T

im
e

betw
een

events
N

/A
1

µs
once

per
event

C
om

plete
file

recorded
N

/A
yes/no

once
per

event
A

cceleration
y-axis

car.acceleration.lateral
0.08

ms
2

50
H

z
G

P
S

longitude
and

latitude
car.navigation.position.current.*

0.000001’
N

/A
T
rigger

event
date

car.edr.event
1

day
N

/A
T
rigger

event
tim

e
car.edr.event

1
m

s
N

/A

T
able

5.6:
A

vailability
of

properties
in

the
E

200
m

iddlew
are

5.4. SYNCHRONIZATION OF LOGS 51

• The time difference of the two system clocks δclock

Therefore we can calculate the time difference of the internal clocks of the
two machines with

• δclock = δcrash − δI,II

The system clock time difference should be nearly constant during the test
runs, as they all took under 1 hour to complete. If the DC-EDR works flawlessly,
the standard deviation of δclock should be equal or below the standard deviation
of the system clocks on the target systems, because the standard deviation of
δI,II would be zero with the data measured over several runs.

5.4.1 Dry Run

Test Setup

The first tests were conducted in a controlled lab environment where two in-
stances of the DC-EDR ran on workstations connected with ordinary 100 Mbit
wired ethernet network interfaces. The machines system clocks had a standard
deviation of 7.8 ms on machine A and 0.5 ms on machine B.

Machine A simulates the car that is involved in the crash and sends the crash
trigger out to machine B, which simulated the uninvolved car only recording
data upon reception of the trigger.

This measurement was repeated 19 times consecutively. Every ten seconds
a crash was simulated generating the according entries in the DC-EDR logs to
obtain mean value and standard deviation.

Evaluation of Data

As expected with this kind of interface the average transmission time was 4.1
ms including the time for registration of the crash inside the AdaptorEDR.

The first value n = 1 of δI,II in table B.1 is unusually large due to the
fact that after receiving the first trigger the networking part of the DC-EDR is
instantiated for the first time.

The results in table B.2 show that the difference of the two internal clocks is
126 ms with a standard deviation of 2,5 ms which means that in this scenario we
can synchronize the two logs with an average accuracy of 2,5 ms or 3 samples.

The deviation was in the same order of magnitude of the system clock ac-
curacy which shows that log synchronization can be achieved in a sense that a
linear timeline of events across multiple DC-EDRs can be established.

5.4.2 Test Run

With the successful dry test the system was now ready to be deployed on the
test platform.

Test Setup

The setup for the test run involved 2 vehicles which were equipped with the
InCarMiddleware and DC-EDRs. They were parked within communication
range of one another. Then vehicle A was driven out of communication range

52

and returned to its origin, reestablishing the radio link with vehicle B. During
the whole time vehicle A was generating crash triggers and broadcast them in
one minute intervals. Vehicle B received these events and sent back an acknowl-
edge.

The following high frequency (> 5 Hz)

• car.speed.current

• car.engine.rpm.current

• car.engine.torque.pedal

and low frequency (< 5 Hz)

• car.neighborhood.complete

• car.navigation.position.current.*

• car.manualbrake.current

POs were recorded during this test run, adding up to an average of one POs
being sent to the middleware every 20 milliseconds. The configuration of the
platforms was outlined in chapter 3.2.

The data pool consists of 22 crash / acknowledge cycles, which were collected
over a time of 29 minutes. Since the connection between the two vehicles was
severed during the test run 7 trigger cycles were performed without acknowledge
of vehicle B.

Evaluation of Data

The results for the time differences are summarized in table B.3
When the crash trigger is generated two events take place:

• The ring buffer is written to disk

• The remote trigger is broadcasted.

With the data dump having started before the remote trigger is serialized
and sent over the network the time from crash to transmission of the trigger δI,1

increases due to the processing overhead of the dump thread. This dump con-
tinues until the post-recording time was reached, which means that the system
performs file operations until time t after the acknowledge cycle is completed
(t > δI,1 + δI,2). As a result the accuracy of both, δI, 1 and δI, 2 decreases.
This can be seen in the higher mean deviation, which is coherent to the results
of previous tests, showing the negative effect of file operations.

Since the dumping of the data is equally important as the signaling of the
crash to the network the only feasible solution here would be to transmit the
crash trigger and after a timeout allowing neighboring vehicles to send an ac-
knowledge packet start the saving of the data into non-volatile memory. This
approach would trade the first duty of the DC-EDR: recording local data against
the accuracy aspect.

If we now look at the data from the parked vehicle B, we can see that δII,1

does not experience such an dramatic increase. Neither in its mean value nor in

5.4. SYNCHRONIZATION OF LOGS 53

the mean deviation since the DC-EDR on this vehicle is only recording minimal
data. This is due to the filtering of data which blocks consecutive similar values
like the speed being constantly zero.

Because of the inaccuracy of the previous data, the calculated values δt and
δI,II have to be handled with care, since the measurement errors are accumu-
lated.

Nevertheless the transmission time δt clearly increased when we the system
was moved from the wired to the wireless network environment, which sub-
sequently increases the deviation of the two DC-EDR logs in respect to each
other.

The result of the evaluation using the system times from table B.4 revealed
the indeterministic behavior of the DC-EDR. With both system running under
Linux OS the mean deviation of the system time is 0.5 ms. The mean deviation
of δclock, which should be in the same order of magnitude was much higher with
a value of 118 ms.

The main result of this test is that even with optimized data handling and
multithreading the accuracy of the DC-EDR is not sufficient to establish a
timeline across multiple DC-EDRs on the test platform. This is due to the
processing overhead of file handling opposing the accuracy necessary for an
EDR.

5.4.3 Test Run with Increased Load

Test Setup

The second test run had a similar layout with the following differences:
The DC-EDRs on vehicle A was configured to record a higher data load.

The following additional POs were recorded during this test run:

• car.crashsensor.current (low frequency)

• car.acceleration.lateral (high frequency)

In addition, the filtering mechanism was disabled, allowing consecutive POs
with the same value to be sent to the event bus. The number of POs on the
event bus doubled with an average of 1 PO every 10 ms.

The crash trigger was generated every 10 seconds which generated a pool of
51 samples during a recording time of 11 minutes. With the higher frequency of
POs on the event bus the time for dumping the ring-buffer increased, sustaining
file operations until after the crash / acknowledge cycle was completed. This is
the same behaviour as during the previous test run.

With the values from section 5.2 taken into account the accuracy of the time
stamps should decrease during this test run.

Evaluation of Data

The results for the time differences are summarized in table B.5.
As expected nearly all mean values as well as standard deviation increased

during this test run. Since the parked vehicle B also dumped a minimal amount
of data the increased trigger frequency had a negative impact on the mean
processing time for the acknowledge packet δII,1

54

Interestingly the mean and standard deviation of δI,1 decreased, which can
only be explained by the limited number of measuring data during the first test
run.

Subsequently the evaluation of the data (B.6) using the system time shows
a standard deviation of 342 ms for δclock which is a result of the decreased
accuracy of δI,II .

5.4.4 Possible Error Sources

The mean deviation measured for the time difference of two DC-EDR logs cal-
culated in the previous section showed that this method could not be used in
practive even though the dry runs had promising results.

Since the standard deviation of δclock breaks down into the deviations of

1. the measuring method itself

2. the time difference between registration of an event
inside the PropertyBroker and the recording by the DC-EDR

the error for these parts has to be examined.
The magnitude of the first error could be evaluated by examining the logs

recorded during the second test run.
The measuring method is based on the availability of two timestamps: the

high resolution ticks and the system time. With both being generated subse-
quently during execution of the code, the deviation between them should be
minimal. To be exact, it should be equal or below the mean deviation of the
system time for a large enough pool of samples. If it is, we measured the system
inherent error of the system time.

With car.engine.torque.pedal being the PO with the highest sampled
rate the time difference between these two timestamps was calculated for a pool
of over 10000 samples.

The result was that the standard deviation between the two timestamps is
303.37µs, which is below the system time deviation, with a maximum deviation
from the average value of maxm = 1761.5µs.

The deviation inside the middleware is the second factor. Every event has
to pass through the PropertyBroker (as described in section 3.3.2).

The second test had to be performed on data generated in a dry run, since
the DC-EDR was not equipped to record such detailed data during the test
runs.

For this test two Adaptors were equipped with high frequency timers. The
first timer produced a timestamp after an event was sent off to the PropertyBroker.
The second timer was placed after the event registered in the EDRAdaptor. Dur-
ing the test no file operations happened in the DC-EDR.

The results showed that one pass through the middleware took an aver-
age of 1066, 09µs and the standard deviation was 243, 51µs (with a pool of
127 samples). The maximum deviation from the average value in the test was
maxb = 1723, 90µs.

5.5. IMAGE CAPTURING 55

Since every event has to pass through the middleware before a time stamp
is added, we define maxbm = maxb + maxm.

Putting all this together we get the following worst case deviation (all de-
viations adding up) for a complete crash trigger transmission and acknowledge
cycle:

MAX = maxbm︸ ︷︷ ︸
crash registration

+ maxbm︸ ︷︷ ︸
trigger registration︸ ︷︷ ︸

vehicle A
+ maxbm︸ ︷︷ ︸

crash registration

+ maxbm︸ ︷︷ ︸
acknowledge registration︸ ︷︷ ︸

vehicle B
+ maxbm︸ ︷︷ ︸

acknowledge registration︸ ︷︷ ︸
vehicle A

= 5 ∗maxbm

The maximum deviations of both tests are well below the standard deviation
of δclock during the test runs, with MAX = 17 ms as the worst case being one
magnitude below the standard deviation during the test runs.

With these results it can be said that the error cannot be found at a special
point, like the measuring method or the delay introduced by one pass through
the middleware, but in the general erratic system behavior during lengthy disk
operations as shown is section 5.2. This problem has to be specially addressed
when optimizing the system.

5.5 Image Capturing

5.5.1 Test Setup

To test the image capturing capabilities of the DC-EDR and illustrate a usage
scenario the following test setup was used:

Both vehicles were parked within communication range of each other. One
vehicle was faced towards a wall, whereas the other was parked farther away
from the crash scene to provide a global view (see figure 5.7).

One vehicle was generating crash triggers in regular intervals, which started
the local capturing of an image, showing the situation at crash time. The crash
trigger being sent to the second vehicle triggered the secondary image capturing
process thus providing a different angle of the scene.

Since the trigger intervals were set at 10 seconds a series of images (two
shown in 5.8) were captured.

5.5.2 Results

With the USB webcams only delivering a limited quality picture the results can-
not be used for reconstruction of the crash scene. The current implementation

56

Figure 5.7: Image capturing test setup schema

Figure 5.8: Image capturing test results

5.5. IMAGE CAPTURING 57

delivers a 320x240 pixel resolution for all 3 installed webcams simultaneously
with a possible resolution of 640x480 pixels for a single camera.

Nevertheless this scenario illustrates the basic idea of distributed capturing.
Since both cameras have a high focal length, the camera in vehicle A does not
capture the injured person in the top right picture, while the camera in vehicle
B does.

5.5.3 Optimizations

When the system was operated under load the accuracy of the timers decreased,
especially when data was written to disk. During the crash of a vehicle the
system is under the most stress because it has to

• Store the data from volatile into non-volatile memory

• Send the crash trigger to other vehicles

• Send the data collected so far to other vehicles

In addition, this is the time where it has to operate with the highest accu-
racy to provide exact timing information for log synchronization and post-crash
analysis of the data. The first second after the crash is the most interesting in
terms of crash analysis.

To minimize the load on the system an optimization of the data format is of
top-most priority for a DC-EDR being able to run in a production environment.

With file input / output operations using the XML codec being very time
consuming the data format has to be optimized for size. This has the positive
side effect that it would take less time to transmit the data captured on the
accident vehicle to a remote location outside the hazard zone.

With an average of 500 Bytes for one data object in XML representation
we would get a file of 562 kilobytes for one crash log containing the required
data elements from table 5.3. The transmission with the current 802.11 network
interface would take about one second to complete. Based on experience values
during the operation of the FleetNet prototype the maximum net transmission
rate with a 11 Mbit link using UDP is about 680 kilobytes per second.

With the IEEE Standard defining data formats for the required data ele-
ments the volume of data can be reduced. The recommended data formats are
summarized in table 5.7.

With these optimized data formats we get a smaller file for storage and
transmission which would dramatically reduce the load on the system. Since
all elements except the crash acceleration will be recorded 8 seconds before to
5 seconds after the crash, the size of the file will be 12.7 kilobytes including 8
byte integer time stamps (or 3.7 kilobytes without timestamps), which would
transmit in about 19 milliseconds.

By using this lightweight format for storage and transmission a complete DC-
EDR log could be transmitted in approximately 10 packets4. The disadvantage
would be the readability of this format. With the elaborate XML providing
semantic information along with the raw data interoperability between different
combinations of EDR and analysis equipment would be simplified. In addition,

4using standard UDP with an MTU of 1492 bytes

58

D
ata

elem
ent

m
inim

um
sam

pling
rate

data
form

at
A

cceleration
x-axis

(pre
crash)

10
H

z
floating

point
a

A
cceleration

x-axis
(crash

-0.1s
to

+
0.5s)

1000
H

z
floating

point
V

ehicle
indicated

speed
10

H
z

(assum
ed)

floating
point

(assum
ed)

E
ngine

R
P

M
5

H
z

integer
(2

bytes)
E

ngine
throttle

4
H

z
1

byte
Service

brake
2

H
z

1
byte

(assum
ed)

Ignition
cycle

at
crash

tim
e

once
per

cycle
integer

(4
bytes)

Ignition
cycle

at
dow

nload
tim

e
once

per
cycle

integer
(4

bytes)
D

river
safety

belt
status

10
H

z
1

byte
(assum

ed)
A

ir
bag

w
arning

lam
p

N
/A

integer
(for

last
10

counts)
(4

bytes
assum

ed)
(once

for
every

airbag)
A

ir
bag

deploym
ent

level
by

m
anufacturer

1
byte

(used
for

m
ulti-state

air
bags)

A
ir

bag
tim

e
to

1-deploy
once

per
event

integer
(4

bytes
assum

ed)
E

vent
num

ber
for

m
ulti-events

once
per

event
1

byte
(assum

ed)
T

im
e

betw
een

events
N

/A
integer

(4
bytes)

C
om

plete
file

recorded
once

per
event

1
byte

(assum
ed)

T
able

5.7:
R

ecom
m

ended
data

form
ats

for
the

required
IE

E
E

Standard
data

elem
ents

a
a
ssu

m
in

g
3
2
-b

it
IE

E
E

sta
n
d
a
rd

fo
rm

a
t

5.5. IMAGE CAPTURING 59

with the standardized object serialization used for the prototype, format changes
can be implemented globally for both encoder and decoder of the data in one
central place (see [Mil]).

The data format recommended by the IEEE standard provides a dramati-
cally reduced data rate for the log files thereby allowing an increased accuracy
during operation.

Chapter 6

Conclusions and Outlook

The evaluation of the prototype tried to verify the improvements stated in
chapter 2 to their road capability. The analysis provided the following results:

1. The basic operation of a distributed cooperative EDR in a vehicular net-
work is possible with multiple vehicles recording data upon reception of a
trigger event through the network.

2. A non-realtime software architecture cannot provide the necessary timing
requirements to reach millisecond accuracy which is crucial in this appli-
cation domain. Therefore a realtime OS or a hardware solution has to be
used.

3. The DC-EDR can support the sustained data rate necessary for recording
the data elements required by the IEEE Standard with the restriction of
2.

4. To establish a timeline of events across several DC-EDR logs the intro-
duced method proved to be too susceptible to errors introduced by de-
manding disk operations, as they proved to have a drastic impact on the
accuracy of the prototype.

5. The distributed capturing of images enabled by the DC-EDR successfully
showed the future capabilities of this approach.

With the DC-EDR being integrated in the middleware, the use as a network
probe will support multiple applications, since it can directly access all data on
the event bus. As showed during the basic operation test, this usage can for
example give insights into the behavior of the ad-hoc router.

Future work could improve the accuracy of the DC-EDR by porting it to a
realtime system which would subsequently require the whole middleware to be
running on such a system. The advantages of the DC-EDR being integrated into
the middleware has to be weighted against the separation from the middleware,
depending on its future use.

Additionally the aspect of data distribution and recovery with geographically
agile nodes has to be researched. The following questions outline some of the
problems of distributed storage.

60

6.0 Conclusions and Outlook 61

• How can vehicles be identified and requested to transmit their captured
data to a central storage?

• Should data be transmitted upon request or at the next possible oppor-
tunity?

• How can data be associated with a specific accident?

• How many accidents or near-accident should be stored?

• Which amount of data should be stored for which time period? (video vs.
low-profile data)

With the analysis of data rates, some starting points are already given in
this thesis, but they have to be researched in depth by subsequent work.

Finally, the use of a VANET traffic simulator could provide insights to the
behavior of the DC-EDR in an environment with more than two cars which
could answer the following questions.

• Did the crash triggers get routed to all relevant vehicles in the network?

• What was the network’s response time after the crash with multiple vehi-
cles broadcasting messages?

• Did parts of the network collapse due to overload of messages?

Since these problems do not only concern the operation of the DC-EDR but
many of the applications in a VANET domain, they are currently hot topics in
the research community.

Appendix A

DC-EDR Graphs

The following graphs were generated using the data collected during the test
runs. They show the coherence between several recorded data sets on one vehi-
cle. The triggers used to record the data sets on which these graphs are based
were generated manually by the DataGenAdaptor. Since a real crash test us-
ing two vehicles was out of the question during this work, no real correlation
between the logs of two vehicles can be shown here.

Graph A.1 shows the coherence between the engine torque requested by the
driver in percentage of throttle depression and the actual vehicle speed.

Graph A.2 shows the coherence between requested torque and actual RPM
of the engine.

Graph A.3 shows the recording of a test drive conducted in underground
parking. A positive lateral acceleration depicts a right turn whereas a negative
depicts a turn in the left direction.

Figure A.1: Torque / speed graph

62

A DC-EDR Graphs 63

Figure A.2: Torque / RPM graph

Figure A.3: Speed / lateral acceleration graph

Appendix B

Time Difference Data Sets

All δs in the following tables are measured in µs.

Data Sets Recorded during Dry Runs

n δI,1 δI,2 δII,1 δt δI,II

1 38098 91642 61081 15280.5 53378.5
2 7050 12281 4178 4051.5 11101.5
3 5998 10647 5746 2450.5 8448.5
4 8393 10053 4269 2892 11285
5 6479 10747 4613 3067 9546
6 5584 30917 21118 4899.5 10483.5
7 6095 7093 53 3520 9615
8 6423 18297 12645 2826 9249
9 6080 7944 1851 3046.5 9126

10 6662 5543 53 2745 9407
11 6143 10684 126 5279 11422
12 6572 8959 2074 3442.5 10014.5
13 5574 9817 65 4876 10450
14 6305 7270 55 3607.5 9912.5
15 6131 5376 838 2269 8400
16 6379 44029 37673 3178 9557
17 5610 7319 2540 2389.5 7999.5
18 6230 9408 50 4679 10909
19 5760 7439 64 3687.5 9447.5

mean 7977.16 16603.42 8373.26 4115.08 12092.24
std. dev. 7126.37 19979.59 15438.82 2772.94 9776.94

Table B.1: Calculation of DC-EDR trigger time difference during dry run in
section 5.4

With mean being calculated as

64

B Time Difference Data Sets 65

• xmean = 1
n

n∑
i=1

xi

and the standard deviation as

• xstd.dev. =

√
1
n

n∑
i=1

(xi − xmean)2

n δcrash δI,II δclock

1 171000 53378.5 117621.5
2 136000 11101.5 124898.5
3 133000 8448.5 124551.5
4 136000 11285 124715
5 134000 9546 124454
6 133000 10483.5 122516.5
7 135000 9615 125385
8 134000 9249 124751
9 136000 9126.5 126873.5

10 136000 9407 126593
11 136000 11422 124578
12 137000 10014.5 126985.5
13 137000 10450 126550
14 137000 9912.5 127087.5
15 136000 8400 127600
16 137000 9557 127443
17 136000 7999.5 128000.5
18 139000 10909 128091
19 138000 9447.5 128552.5

mean 137736.84 12092.24 125644.61
std. dev. 7985.79 9776.94 2453.25

Table B.2: Calculation of system time difference during dry run in section 5.4

66

Data sets recorded during test runs

n δI,1 δI,2 δII,1 δt δI,II

1 146422 95727 301 47713 194135
2 36315 304338 284 152027 188342
3 19987 390896 275 195310.5 215297.5
4 25088 59615 280 29667.5 54755.5
5 46368 416291 27534 194378.5 240746.5
6 27873 19649 265 9692 37565
7 55497 596504 282 298111 353608
8 44643 105410 286 52562 97205
9 31659 10050 259 4895.5 36554.5

10 262502 29100 302 14399 276901
11 9919 86757 293 43232 53151
12 43641 98121 60512 18804.5 62445.5
13 7104 104380 62689 20845.5 27949.5
14 57066 24746 271 12237.5 69303.5
15 29860 694007 275 346866 376726
16 38730 78330 269 39030.5 77760.5
17 49285 43706 245 21730.5 71015.5
18 44671 44624 274 22175 66846
19 29983 73543 271 36636 66619
20 37352 28920 258 14331 51683
21 39977 40767 4448 18159.5 58136.5
22 11565 217939 223 108858 120423

mean 49795.77 161973.64 7277.09 77348.27 127144.05
std. dev. 53638.93 190486.03 18098.01 95791.75 103026.23

Table B.3: Calculation of EDR trigger time difference during first test run in
section 5.4

B Time Difference Data Sets 67

n δcrash δI,II δclock

1 1376000 194135 1181865
2 1536000 188342 1347658
3 1604000 215297.5 1388702.5
4 1294000 54755.5 1239244.5
5 1647000 240746.5 1406253.5
6 1255000 37565 1217435
7 1870000 353608 1516392
8 1374000 97205 1276795
9 1262000 36554.5 1225445.5

10 1270000 276901 993099
11 1329000 53151 1275849
12 1270000 62445.5 1207554.5
13 1273000 27949.5 1245050.5
14 1275000 69303.5 1205696.5
15 1967000 376726 1590274
16 1336000 77760.5 1258239.5
17 1309000 71015.5 1237984.5
18 1286000 66846 1219154
19 1308000 66619 1241381
20 1301000 51683 1249317
21 1299000 58136.5 1240863.5
22 1409000 120423 1288577

mean 1402272.73 127144.05 1275128.68
std. dev. 195456.15 103026.23 118024.38

Table B.4: Calculation of system time difference during first test run in section
5.4

68

n δI,1 δI,2 δII,1 δt δI,II

1 205142 961915 260064 35925.5 556067.5
2 17385 133132 9964 61584 78969
3 32209 277849 12636 132606.5 164815.5
4 52868 361834 36581 162626.5 215494.5
5 262841 25768 10483 7642.5 270483.5
6 44446 243175 16420 113377.5 157823.5
7 19989 334680 335 167172.5 187161.5
8 9541 425610 146 212732 222273
9 41428 266355 319 133018 174446

10 9971 582703 8864 286919.5 296890.5
11 60384 10142 347 4897.5 65281.5
12 32081 395439 16211 189614 221695
13 42803 449390 343 224523.5 267326.5
14 5663 75532 19117 28207.5 33870.5
15 10006 158925 16471 71227 81233
16 40021 127184 145 63519.5 103540.5
17 40027 183139 21500 80819.5 120846.5
18 35270 362365 151 181107 216377
19 4293 142026 17431 62297.5 66590.5
20 4188 57222 11403 22909.5 27097.5
21 3446 405304 13068 196118 199564
22 4204 54827 10998 21914.5 26118.5
23 4352 85168 318 42425 46777
24 4064 649312 19901 314705.5 318769.5
25 3310 74282 145 37068.5 40378.5
26 4070 52520 12852 19834 23904
27 4237 64916 11159 26878.5 31115.5
28 4013 112776 45449 33663.5 37676.5
29 4052 766475 144 383165.5 387217.5
30 4159 437217 314 218451.5 222610.5
31 3615 454866 145 227360.5 230975.5
32 3920 201169 16715 92227 96147
33 20110 471159 145 235507 255617
34 3208 527040 312 263364 266572
35 3462 445605 136 222734.5 226196.5
36 3929 30258 299 14979.5 18908.5
37 4070 55846 33727 11059.5 15129.5
38 3475 389423 307 194558 198033
39 3311 440280 113 220083.5 223394.5
40 3938 49690 308 24691 28629
41 3430 215437 178 107629.5 111059.5
42 3355 215691 23689 96001 99356
43 3525 259070 170 129.5 132975
44 3883 29649 318 14665.5 18548.5

continued on next page

B Time Difference Data Sets 69

n δI,1 δI,2 δII,1 δt δI,II

45 3357 188806 141 94332.5 97689.5
46 3836 29666 312 14677 18513
47 4290 31988 10775 10606.5 14896.5
48 3966 32574 9232 11671 15637
49 4288 38352 143 19104.5 23392.5
50 3241 180035 64066 57984.5 61225.5
51 3273 189340 120 94610 97883

mean 21645.98 25061.29 14404.51 117828.39 139474.37
std. dev. 45943.01 211730.85 37108.91 99873.29 113887.99

Table B.5: Calculation of EDR trigger time difference during test run with
increased load in section 5.4

70

n δcrash δI,II δclock

1 972000 556067.5 415932.5
2 1768000 78969 1689031
3 1524000 164815.5 1359184.5
4 1410000 215494.5 1194505.5
5 1666000 270483.5 1395516.5
6 1563000 157823.5 1405176.5
7 1481000 187161.5 1293838.5
8 1391000 222273 1168727
9 1555000 174446 1380554

10 1215000 296890.5 918109.5
11 759000 65281.5 693718.5
12 1399000 221695 1177305
13 1308000 267326.5 1040673.5
14 717000 33870.5 683129.5
15 1680000 81233 1598767
16 1647000 103540.5 1543459.5
17 1580000 120846.5 1459153.5
18 1450000 216377 1233623
19 1760000 66590.5 1693409.5
20 756000 27097.5 728902.5
21 1409000 199564 1209436
22 752000 26118.5 725881.5
23 758000 46777 711223
24 1314000 318769.5 995230.5
25 722000 40378.5 681621.5
26 750000 23904 726096
27 749000 31115.5 717884.5
28 755000 37676.5 717323.5
29 1450000 387217.5 1062782.5
30 1362000 222610.5 1139389.5
31 1340000 230975.5 1109024.5
32 1617000 96147 1520853
33 1291000 255617 1035383
34 1269000 266572 1002428
35 1351000 226196.5 1124803.5
36 747000 18908.5 728091.5
37 725000 15129.5 709870.5
38 1387000 198033 1188967
39 1336000 223394.5 1112605.5
40 745000 28629 716371
41 1562000 111059.5 1450940.5
42 1576000 99356 1476644
43 1516000 132975 1383025
44 744000 18548.5 725451.5

continued on next page

B Time Difference Data Sets 71

n δcrash δI,II δclock

45 1599000 97689.5 1501310.5
46 743000 18513 724487
47 740000 14896.5 725103.5
48 739000 15637 723363
49 741000 23392.5 717607.5
50 645000 61225.5 583774.5
51 581000 97883 483117

mean 1188549.02 139474.37 1049074.65
std. dev. 378420.31 113887.99 341521.04

Table B.6: Calculation of system time difference during test run with increased
load in section 5.4

Acronyms

AS Active Safety

BMBF Bundesministerium für Bildung und Forschung

CAN Controller Area Network

DC-EDR Distributed Cooperative Event Data Recorder

DO DatedObject

EDR Event Data Recorder

EEPROM Electrically-Erasable Programmable Read-Only Memory

GMC General Motors Corporation

GPS Global Positioning System

GSM Global System for Mobile Communications

JNI Java Native Interface

MTU Maximum Transmission Unit

MVEDRs Motor Vehicle Event Data Recorders

Mbit Megabit

NHTSA National Highway Transport Safety Agency

NTP Network Time Protocol

OEM Original Equipment Manufacturer

OS Operating System

PIO PropertyInfoObject

PO PropertyObject

PROM Programmable Read-Only Memory

PS Passive Safety

RCM Restraint Control Module

RPM Revolutions Per Minute

72

B Time Difference Data Sets 73

SDM Sensing and Diagnostic Module

TSC Timestampcounter

UDS Unfalldatenspeicher

VANET Vehicular Ad-hoc Network

References

74

General references

[CEF02] Cseh, Christian ; Eberhardt, Reinhold ; Franz, Walter: Mobile
Ad-Hoc Funknetze für die Fahrzeug-Fahrzeug-Kommunikation. In:
Deutscher Workshop über Mobile Ad Hoc Netze, WMAN 2002, Ulm

[CHMS99] Chidester, Augustus ; Hinch, John ; Mercer, Thomas C. ;
Schultz, Keith S.: Recording Automotive Crash Event Data.
In: Proceedings of the International Symposium on Transportation
Recorders

[CHR98] Chidester, Augustus B. ; Hinch, John ; Roston, Thomas A.:
Real World Experience with Event Data Recorders / Na-
tional Highway Traffic Safety Administration. Version: 1998.
http://www-nrd.nhtsa.dot.gov/edr-site/uploads/
Real world experience with event data recorders.pdf (247).
– Paper. – Online–Ressource

[Eck02] Eckel, Bruce: Thinking in Java. Prentice Hall Professional Tech-
nical Reference, 2002. – ISBN 0–1310–0287–2

[EGE02] Elson, Jeremy ; Girod, Lewis ; Estrin, Deborah: Fine-
grained network time synchronization using reference broadcasts. In:
SIGOPS Oper. Syst. Rev. 36 (2002), Nr. SI, S. 147–163. http://dx.
doi.org/http://doi.acm.org/10.1145/844128.844143. – DOI
http://doi.acm.org/10.1145/844128.844143. – ISSN 0163–5980

[ER03] Elson, Jeremy ; Römer, Kay: Wireless sensor networks: a
new regime for time synchronization. In: SIGCOMM Com-
put. Commun. Rev. 33 (2003), Nr. 1, S. 149–154. http://dx.
doi.org/http://doi.acm.org/10.1145/774763.774787. – DOI
http://doi.acm.org/10.1145/774763.774787. – ISSN 0146–4833

[Gro99] Grossi, Dennis R.: Aviation Recorder Overview. In: Proceedings
of the International Symposium on Transportation Recorders

[IEE04] IEEE Task P1616: IEEE Standard for Motor Vehicle Event Data
Recorders (MVEDRs). : IEEE, New York, 2004

[Sti05] Stiller, Andreas: Zeitfenster. In: c’t (2005)

75

http://www-nrd.nhtsa.dot.gov/edr-site/uploads/Real_world_experience_with_event_data_recorders.pdf
http://www-nrd.nhtsa.dot.gov/edr-site/uploads/Real_world_experience_with_event_data_recorders.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/844128.844143
http://dx.doi.org/http://doi.acm.org/10.1145/844128.844143
http://dx.doi.org/http://doi.acm.org/10.1145/774763.774787
http://dx.doi.org/http://doi.acm.org/10.1145/774763.774787

Patent references

[Bag99] Bague, Adolfo V.: Traffic Accident Data Recorder and Traffic
Accident Reproduction System and Method. 1999

[CGTW99] Chainer, Timothy J. ; Greengard, Claude A. ; Tresser,
Charles P. ; Wu, Chai W.: Event-Recorder for transmitting and
storing electronic signature data. 1999

[JHB98] Jambhekar, Nilkanth S. ; Hara, Jacques ; Barr, John R.:
Verfahren und Gerät zur Datenaufzeichnung und -sicherung von
Fahrzeugsteuerereignissen. 1998

[MPB98] Mackey, John J. ; Pandolfi, Richard ; Brogan, Christopher J.:
Mobile Vehicle Accident Data System. 1998

[Ray99] Rayner, Gary A.: Vahicle Data Recorder. 1999

[Sch01] Schatebeck, Harald: Verfahren zur Meldung eines Notrufs. 2001

[Sza88] Szabo, Viktor: Accident Data Recorder. 1988

76

Internet references

[Alt] Altius Solutions LLC. http://www.altiusllc.com

[CAN05] Controller Area Network an Overview. http://www.can-cia.org/
can/. Version: 2001-2005

[CDR] Crash Data Retrieval System from Vetronix. http://www.vetronix.
com/diagnostics/cdr/index.html

[Dri] DriveCam Video Systems. http://www.drivecam.de

[Fle] FleetNet Homepage. http://www.et2.tu-harburg.de/fleetnet/
index.html

[Hai01] Haight, W. R.: Automobile Event Data Recorder (EDR) Technol-
ogy - Evolution, Data, and Reliability. www.collisionsafety.net/
documents/Event%20Data%20Recorders.pdf. Version: 2001

[Mil] Milne, Philip: Using XMLEncoder. http://java.sun.com/
products/jfc/tsc/articles/persistence4/

[OnS] OnStar from General Motors. http://www.onstar.com/us english/
jsp/explore/onstar basics/technology.jsp#aacn

[PB05] Pfisterer, Matthias ; Bomers, Florian: Java Sound Re-
sources: FAQ: Performance Issues. http://www.jsresources.org/
faq performance.html. Version: 2005

[Ptp] Ptplot. http://ptolemy.eecs.berkeley.edu/java/ptplot/

[Rou] Roubtsov, Vladimir: My kingdom for a good timer! - Reach sub-
millisecond timing precision in Java. http://www.javaworld.com/
javaworld/javaqa/2003-01/01-qa-0110-timing.html

77

http://www.altiusllc.com
http://www.can-cia.org/can/
http://www.can-cia.org/can/
http://www.vetronix.com/diagnostics/cdr/index.html
http://www.vetronix.com/diagnostics/cdr/index.html
http://www.drivecam.de
http://www.et2.tu-harburg.de/fleetnet/index.html
http://www.et2.tu-harburg.de/fleetnet/index.html
www.collisionsafety.net/documents/Event%20Data%20Recorders.pdf
www.collisionsafety.net/documents/Event%20Data%20Recorders.pdf
http://java.sun.com/products/jfc/tsc/articles/persistence4/
http://java.sun.com/products/jfc/tsc/articles/persistence4/
http://www.onstar.com/us_english/jsp/explore/onstar_basics/technology.jsp#aacn
http://www.onstar.com/us_english/jsp/explore/onstar_basics/technology.jsp#aacn
http://www.jsresources.org/faq_performance.html
http://www.jsresources.org/faq_performance.html
http://ptolemy.eecs.berkeley.edu/java/ptplot/
http://www.javaworld.com/javaworld/javaqa/2003-01/01-qa-0110-timing.html
http://www.javaworld.com/javaworld/javaqa/2003-01/01-qa-0110-timing.html

	Abstract

	Contents

	List of Figures
	List of Tables
	Introduction
	Objective and Scope
	Outline
	Fundamental terms

	Analysis of EDR technology
	History of Data Recorders
	Current Technology
	Crash Relevant Data
	Storage
	Data Extraction
	The IEEE Standard for Motor Vehicle EDRs

	Limitations of Current Technology
	Trigger Event
	Location of Sensors
	Data Loss
	Synchronization of EDR Logs

	Improvements Achieved by the Use of Ad-hoc Networks
	Additional Sensory and Network Data
	Time Synchronization
	Distributed Storage
	Usage Scenarios

	Design
	Extended Triggering Mechanism
	Platform Architecture
	Hardware
	Network Architecture and Routing
	Middleware Components

	EDR Components
	Manager
	Adaptor
	Server
	DC-EDR States

	Implementation details
	Measuring Method
	Data Format and Serialization
	Post-crash analysis
	Optimizations

	Validation of the Prototype
	Basic Operation
	Test setup
	Results

	Operation under Load
	Test setup
	Results

	Data Availability and Resolution Compared to the IEEE Standard
	Data Elements for Light Vehicles
	Comparison with Prototype

	Synchronization of Logs
	Dry Run
	Test Run
	Test Run with Increased Load
	Possible Error Sources

	Image Capturing
	Test Setup
	Results
	Optimizations

	Conclusions and Outlook
	Appendices
	A:
DC-EDR Graphs
	B:
Time Difference Data Sets

	Acronyms

	References

